Advertisement

Poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch)

  • M. Ashraful Islam
  • Tage Thorstensen
  • Jihong Liu Clarke
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1224)

Abstract

Genetic engineering is an important tool for introducing desired genes into poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch). We describe in this chapter an Agrobacterium tumefaciens-mediated transformation protocol for poinsettia. A detailed description of genetic transformation, antibiotic selection, subsequent regeneration via somatic embryogenesis, and rooting as well as molecular and morphological analyses is included. The methodology described here could facilitate the future engineering of poinsettia for research purpose as well as commercial production of poinsettia plants with improved resistance or novel traits.

Key words

Agrobacterium tumefaciens-mediated transformation Poinsettia Agrobacterium tumefaciens Somatic embryogenesis Binary vector Transgenic plants 

Notes

Acknowledgments

Thanks are due to Sissel Haugslien, Dag-Ragnar Blystad, Erling Fløistad, and Carl Spetz for their practical support; CSIRO Plant Industry for providing pHANNIBAL and pART27 vectors; and J. Kristiansen nursery for the poinsettia plants. We are grateful to Dr. Nicholas Clarke for the linguistic correction. This research was supported by the Research Council of Norway grants 147147/140 and 199398 to Dr. Jihong Liu Clarke.

References

  1. 1.
    Ecke P III, Faust JE, Higgins A, Williams J (2004) The Ecke poinsettia manual. Ball, Batavia, ILGoogle Scholar
  2. 2.
    Williams J (2005) Poinsettia production. FlowerTech 8:6–9Google Scholar
  3. 3.
    USDA (2009) [NASS] Floriculture crops: 2008 summary. Sp Cr 6–1. (http://usda.mannlib.cornell.edu/usda/current/FlorCrop/FlorCrop-04-23-2009.pdf)
  4. 4.
    Deroles SC, Boase MR, Lee CE, Peters TA (2002) Gene transfer to plants. In: Vainstein A (ed) Breeding for ornamentals: classical and molecular approaches. Kluwer, Dordrecht, pp 156–196Google Scholar
  5. 5.
    Hammond J, Hsu HT, Huang Q, Jordan R, Kamo K, Pooler M (2006) Transgenic approaches to disease resistance in ornamental crops. J Crop Improv 17:155–210CrossRefGoogle Scholar
  6. 6.
    Lütken H, Clarke JL, Müller R (2012) Genetic engineering and sustainable production of ornamentals: current status and future directions. Plant Cell Rep 31:1141–11573PubMedCrossRefGoogle Scholar
  7. 7.
    Yoshikazu T (2004) Visual biotechnology. Blue rose realized by biotechnology. Biosci Ind 62:789–790Google Scholar
  8. 8.
    Kamo K, Hammond J, Roh M (1997) Transformation of Gladiolus for disease resistance. J Kor Soc Hort Sci 38:188–193Google Scholar
  9. 9.
    Teixeira da Silva JA (2004) Ornamental chrysanthemum: improvement by biotechnology. Plant Cell Tiss Org Cult 79:1–18CrossRefGoogle Scholar
  10. 10.
    Smith F, Chou TS, Eisenreich R, Sanford J, Blowers A, Van Eck J (1997) Production of transgenic poinsettia. US Patent 7,119,262, pp 1–36Google Scholar
  11. 11.
    Vik NI, Hvoslef-Eide AK, Gjerde H, Bakke K (2001) Stable transformation of poinsettia via electrophoresis. Acta Hort 560:101–103Google Scholar
  12. 12.
    Clarke JL, Klemsdal SS, Fløistad E, Hvoslef-Eide AK, Haugslien S, Moe R, Blystad DR (2006) Genetic engineering of poinsettia with the aim of enhancing its resistance to poinsettia mosaic virus. Acta Hort 722:321–325Google Scholar
  13. 13.
    Clarke JL, Spetz C, Haugslien S, Xing S, Dees MW et al (2008) Agrobacterium tumefaciens-mediated transformation of poinsettia, Euphorbia pulcherrima, with virus-derived hairpin RNA constructs confers resistance to poinsettia mosaic virus. Plant Cell Rep 27:1027–1038PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Islam MA, Lütken H, Haugslien S, Blystad D-R, Torre S et al (2013) Overexpression of the AtSHI gene in poinsettia, Euphorbia pulcherrima, results in compact plants. PLoS One 8:e53377. DOI:  10.1371/journal.pone.0053377
  15. 15.
    Helliwell C, Waterhouse P (2003) Constructs and methods for high-throughput gene silencing in plants. Methods 30:289–295PubMedCrossRefGoogle Scholar
  16. 16.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:495–497CrossRefGoogle Scholar
  17. 17.
    Sheikholeslam SN, Weeks DP (1987) Acetosyringone promotes high efficiency transformation of Arabidopsis thaliana explants by Agrobacterium tumefaciens. Plant Mol Biol 8:291–298PubMedCrossRefGoogle Scholar
  18. 18.
    Stachel SE, Messens E, Van Montagu M, Zambryski P (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318:624–629CrossRefGoogle Scholar
  19. 19.
    Melchers L, Regensburg‐Tuink A, Schilperoort R, Hooykaas P (1989) Specificity of signal molecules in the activation of Agrobacterium virulence gene expression. Mol Microbiol 3:969–977PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • M. Ashraful Islam
    • 1
    • 2
  • Tage Thorstensen
    • 1
  • Jihong Liu Clarke
    • 1
  1. 1.Bioforsk-Norwegian Institute for Agricultural and Environmental ResearchÅsNorway
  2. 2.Department of HorticultureBangladesh Agricultural UniversityMymensinghBangladesh

Personalised recommendations