BAC Transgenic Zebrafish for Transcriptional Promoter and Enhancer Studies

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1227)

Abstract

With the advent of BAC recombineering techniques, transcriptional promoter and enhancer isolation studies have become much more feasible in zebrafish than in mouse given the easy access to large numbers of fertilized zebrafish eggs and offspring in general, the easy to follow ex-utero development of zebrafish, an overall less skill demand and a more cost-effective technique. Here we provide guidelines for the generation of BAC recombineering-based transgenic zebrafish for DNA transcriptional promoter and enhancer identification studies as well as protocols for their analysis, which have been successfully applied in our laboratories many times. BAC recombineering in zebrafish allows for economical functional genomics studies, for example by integrating developmental biology with comparative genomics approaches to validate potential enhancer elements of vertebrate transcription factors.

Key words

BAC recombination technology Enhancer lacZ EGFP Zebrafish Paraffin sectioning 

Notes

Acknowledgements

The authors are grateful to Serene Lee and Song Jie as well as Drs Igor Kondrychyn, V Sivakamasundari, Zhen Li, Sumantra Chatterjee, Vladimir Korzh, and especially Mathavan Sinnakaruppan for invaluable advice, patience and access to the zebrafish equipment.

References

  1. 1.
    Shizuya H, Birren B, Kim UJ et al (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci U S A 89:8794–8797PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Testa G, Zhang Y, Vintersten K et al (2003) Engineering the mouse genome with bacterial artificial chromosomes to create multipurpose alleles. Nat Biotechnol 21:443–447PubMedCrossRefGoogle Scholar
  3. 3.
    Lee EC, Yu D, Martinez De Velasco J et al (2001) A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73:56–65PubMedCrossRefGoogle Scholar
  4. 4.
    Muyrers JP, Zhang Y, Testa G et al (1999) Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Res 27:1555–1557PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Zhang Y, Buchholz F, Muyrers JP et al (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20:123–128PubMedCrossRefGoogle Scholar
  6. 6.
    Dechiara TM, Poueymirou WT, Auerbach W et al (2009) VelociMouse: fully ES cell-derived F0-generation mice obtained from the injection of ES cells into eight-cell-stage embryos. Methods Mol Biol 530:311–324PubMedCrossRefGoogle Scholar
  7. 7.
    Dechiara TM, Poueymirou WT, Auerbach W et al (2010) Producing fully ES cell-derived mice from eight-cell stage embryo injections. Methods Enzymol 476:285–294PubMedCrossRefGoogle Scholar
  8. 8.
    Kraus P, Leong G, Tan V et al (2010) A more cost effective and rapid high percentage germ-line transmitting chimeric mouse generation procedure via microinjection of 2-cell, 4-cell, and 8-cell embryos with ES and iPS cells. Genesis 48:394–399PubMedCrossRefGoogle Scholar
  9. 9.
    Chatterjee S, Bourque G, Lufkin T (2011) Conserved and non-conserved enhancers direct tissue specific transcription in ancient germ layer specific developmental control genes. BMC Dev Biol 11:63PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Chatterjee S, Lufkin T (2011) Fishing for function: zebrafish BAC transgenics for functional genomics. Mol Biosyst 7:2345–2351PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Asakawa K, Abe G, Kawakami K (2013) Cellular dissection of the spinal cord motor column by BAC transgenesis and gene trapping in zebrafish. Front Neural Circuits 7:100PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Shakes LA, Du H, Wolf HM et al (2012) Using BAC transgenesis in zebrafish to identify regulatory sequences of the amyloid precursor protein gene in humans. BMC Genomics 13:451PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Clark KJ, Urban MD, Skuster KJ et al (2011) Transgenic zebrafish using transposable elements. Methods Cell Biol 104:137–149PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Suster ML, Abe G, Schouw A et al (2011) Transposon-mediated BAC transgenesis in zebrafish. Nat Protoc 6:1998–2021PubMedCrossRefGoogle Scholar
  15. 15.
    Suster ML, Kikuta H, Urasaki A et al (2009) Transgenesis in zebrafish with the tol2 transposon system. Methods Mol Biol 561:41–63PubMedCrossRefGoogle Scholar
  16. 16.
    Wixon J (2000) Featured organism: Danio rerio, the zebrafish. Yeast 17:225–231PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Brittijn SA, Duivesteijn SJ, Belmamoune M et al (2009) Zebrafish development and regeneration: new tools for biomedical research. Int J Dev Biol 53:835–850PubMedCrossRefGoogle Scholar
  18. 18.
    Grunwald DJ, Eisen JS (2002) Headwaters of the zebrafish – emergence of a new model vertebrate. Nat Rev Genet 3:717–724PubMedCrossRefGoogle Scholar
  19. 19.
    Seabra R, Bhogal N (2010) In vivo research using early life stage models. In Vivo 24:457–462PubMedGoogle Scholar
  20. 20.
    Gong Z, Ju B, Wang X et al (2002) Green fluorescent protein expression in germ-line transmitted transgenic zebrafish under a stratified epithelial promoter from keratin8. Dev Dyn 223:204–215PubMedCrossRefGoogle Scholar
  21. 21.
    Zhang G, Gurtu V, Kain SR (1996) An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells. Biochem Biophys Res Commun 227:707–711PubMedCrossRefGoogle Scholar
  22. 22.
    Culp P, Nusslein-Volhard C, Hopkins N (1991) High-frequency germ-line transmission of plasmid DNA sequences injected into fertilized zebrafish eggs. Proc Natl Acad Sci U S A 88:7953–7957PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Kimmel CB, Ballard WW, Kimmel SR et al (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310PubMedCrossRefGoogle Scholar
  24. 24.
    Stuart GW, Mcmurray JV, Westerfield M (1988) Replication, integration and stable germ-line transmission of foreign sequences injected into early zebrafish embryos. Development 103:403–412PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Petra Kraus
    • 1
  • Cecilia L. Winata
    • 2
  • Thomas Lufkin
    • 1
  1. 1.Department of BiologyClarkson UniversityPotsdamUSA
  2. 2.Human GeneticsGenome Institute of SingaporeSingaporeSingapore

Personalised recommendations