Micro Chromatin Immunoprecipitation (μChIP) from Early Mammalian Embryos

  • John Arne DahlEmail author
  • Arne Klungland
Part of the Methods in Molecular Biology book series (MIMB, volume 1222)


Chromatin immunoprecipitation (ChIP) is a powerful method for mapping protein–DNA interactions in vivo. Genomic localization of histone modifications, transcription factors, and other regulatory proteins can be revealed by ChIP. However, conventional ChIP protocols require the use of large numbers of cells, which prevents the application of ChIP to rare cell types. We have developed ChIP assays suited for the immunoprecipitation of histone proteins or transcription factors from small cell numbers. Here we describe a rapid, yet sensitive micro (μ)ChIP protocol producing high signal to noise ratio output, suitable for as few as 100 cells. This chapter provides a detailed protocol for μChIP from early mammalian embryos, also suitable for any sample of limited numbers of cells. Minor modifications of this optimized high signal to noise ChIP protocol make it a reliable tool for the use with any cell number (100–107).

Key words

Chromatin immunoprecipitation ChIP Histone Acetylation Methylation Epigenetics Embryo Inner cell mass Trophectoderm 



Our work is supported by the Norwegian Cancer Society. We are thankful to Dr. Adam Robertson for reading and commenting on important parts of this chapter.


  1. 1.
    Arney KL, Erhardt S, Drewell RA, Surani MA (2001) Epigenetic reprogramming of the genome—from the germ line to the embryo and back again. Int J Dev Biol 45(3):533–540PubMedGoogle Scholar
  2. 2.
    Morgan HD, Santos F, Green K, Dean W, Reik W (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14 Spec No 1:R47–58Google Scholar
  3. 3.
    van der Heijden GW et al (2005) Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech Dev 122(9): 1008–1022PubMedCrossRefGoogle Scholar
  4. 4.
    Torres-Padilla ME, Bannister AJ, Hurd PJ, Kouzarides T, Zernicka-Goetz M (2006) Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos. Int J Dev Biol 50(5):455–461PubMedGoogle Scholar
  5. 5.
    Torres-Padilla ME, Parfitt DE, Kouzarides T, Zernicka-Goetz M (2007) Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature 445(7124):214–218PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Mayer W, Niveleau A, Walter J, Fundele R, Haaf T (2000) Demethylation of the zygotic paternal genome. Nature 403(6769):501–502PubMedCrossRefGoogle Scholar
  7. 7.
    Oswald J et al (2000) Active demethylation of the paternal genome in the mouse zygote. Curr Biol 10(8):475–478PubMedCrossRefGoogle Scholar
  8. 8.
    Santos F, Hendrich B, Reik W, Dean W (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241(1): 172–182PubMedCrossRefGoogle Scholar
  9. 9.
    Santos F, Peters AH, Otte AP, Reik W, Dean W (2005) Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. Dev Biol 280(1):225–236PubMedCrossRefGoogle Scholar
  10. 10.
    Santos F et al (2003) Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Curr Biol 13(13):1116–1121PubMedCrossRefGoogle Scholar
  11. 11.
    Iqbal K, Jin SG, Pfeifer GP, Szabo PE (2011) Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc Natl Acad Sci U S A 108(9):3642–3647PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Wossidlo M et al (2011) 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat Commun 2:241PubMedCrossRefGoogle Scholar
  13. 13.
    Rossant J, Tam PP (2009) Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development 136(5):701–713PubMedCrossRefGoogle Scholar
  14. 14.
    Dahl JA, Reiner AH, Klungland A, Wakayama T, Collas P (2010) Histone H3 lysine 27 methylation asymmetry on developmentally-regulated promoters distinguish the first two lineages in mouse preimplantation embryos. PLoS One 5(2):e9150PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Smith ZD et al (2012) A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 484:339–344PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Smith ZD, Meissner A (2013) DNA methylation: roles in mammalian development. Nat Rev Genet 14(3):204–220PubMedCrossRefGoogle Scholar
  17. 17.
    Niwa H et al (2005) Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123(5):917–929PubMedCrossRefGoogle Scholar
  18. 18.
    Surani MA, Hayashi K, Hajkova P (2007) Genetic and epigenetic regulators of pluripotency. Cell 128(4):747–762PubMedCrossRefGoogle Scholar
  19. 19.
    Dean W et al (2001) Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc Natl Acad Sci U S A 98(24): 13734–13738PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Erhardt S et al (2003) Consequences of the depletion of zygotic and embryonic enhancer of zeste 2 during preimplantation mouse development. Development 130(18):4235–4248PubMedCrossRefGoogle Scholar
  21. 21.
    Solomon MJ, Larsen PL, Varshavsky A (1988) Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53: 937–947PubMedCrossRefGoogle Scholar
  22. 22.
    Hebbes TR, Thorne AW, Crane-Robinson C (1988) A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J 7(5):1395–1402PubMedPubMedCentralGoogle Scholar
  23. 23.
    Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–956PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    O'Neill LP, Turner BM (1995) Histone H4 acetylation distinguishes coding regions of the human genome from heterochromatin in a differentiation-dependent but transcription-independent manner. EMBO J 14(16): 3946–3957PubMedPubMedCentralGoogle Scholar
  25. 25.
    Bernstein BE, Kamal M, Lindblad-Toh K, Bekiranov S (2005) Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120:169–181PubMedCrossRefGoogle Scholar
  26. 26.
    Azuara V, Perry P, Sauer S, Spivakov M (2006) Chromatin signatures of pluripotent cell lines. Nat Cell Biol 8:532–538PubMedCrossRefGoogle Scholar
  27. 27.
    Loh YH et al (2006) The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 38: 431–440PubMedCrossRefGoogle Scholar
  28. 28.
    Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS (2006) Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125:301–313PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Guenther MG, Levine SS, Boyer LA, Jaenisch R (2007) A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130:77–88PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Mikkelsen TS et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448(7153):553–560PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Zhao XD et al (2007) Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell 1:286–298PubMedCrossRefGoogle Scholar
  32. 32.
    Dixon JR et al (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485(7398): 376–380PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Hunkapiller J et al (2012) Polycomb-like 3 promotes polycomb repressive complex 2 binding to CpG islands and embryonic stem cell self-renewal. PLoS Genet 8(3):e1002576PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Shen Y et al (2012) A map of the cis-regulatory sequences in the mouse genome. Nature 488(7409):116–120PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Hon GC et al (2013) Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat Genet 45(10):1198–1206PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Gamble MJ, Frizzell KM, Yang C, Krishnakumar R, Kraus WL (2010) The histone variant macroH2A1 marks repressed autosomal chromatin, but protects a subset of its target genes from silencing. Genes Dev 24(1):21–32PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    O’Neill LP, VerMilyea MD, Turner BM (2006) Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations. Nat Genet 38(7):835–841PubMedCrossRefGoogle Scholar
  38. 38.
    Dahl JA, Collas P (2007) Q2ChIP, a quick and quantitative chromatin immunoprecipitation assay, unravels epigenetic dynamics of developmentally regulated genes in human carcinoma cells. Stem Cells 25(4):1037–1046PubMedCrossRefGoogle Scholar
  39. 39.
    Attema JL et al (2007) Epigenetic characterization of hematopoietic stem cell differentiation using miniChIP and bisulfite sequencing analysis. Proc Natl Acad Sci U S A 104(30): 12371–12376PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Acevedo LG et al (2007) Genome-scale ChIP-chip analysis using 10,000 human cells. Biotechniques 43(6):791–797PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Dahl JA, Collas P (2008) MicroChIP—a rapid micro chromatin immunoprecipitation assay for small cell samples and biopsies. Nucleic Acids Res 36(3):e15PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Dahl JA, Collas P (2008) A rapid micro chromatin immunoprecipitation assay (microChIP). Nat Protoc 3(6):1032–1045PubMedCrossRefGoogle Scholar
  43. 43.
    Dahl JA, Reiner AH, Collas P (2009) Fast genomic muChIP-chip from 1,000 cells. Genome Biol 10(2):R13PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Adli M, Zhu J, Bernstein BE (2010) Genome-wide chromatin maps derived from limited numbers of hematopoietic progenitors. Nat Methods 7(8):615–618PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Goren A et al (2010) Chromatin profiling by directly sequencing small quantities of immunoprecipitated DNA. Nat Methods 7(1): 47–49PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Gilfillan GD et al (2012) Limitations and possibilities of low cell number ChIP-seq. BMC Genomics 13:645PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Herrmann D, Dahl JA, Lucas-Hahn A, Collas P, Niemann H (2013) Histone modifications and mRNA expression in the inner cell mass and trophectoderm of bovine blastocysts. Epigenetics 8(3):281–289PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Orlando V (2000) Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem Sci 25(3):99–104PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute of Clinical Medicine, Division of diagnostics and intervention, Department of MicrobiologyOslo university hospitalOsloNorway
  2. 2.Clinic for Diagnostics and Intervention and Institute of Medical Microbiology, BIG CAS-OSLO Genome Research CooperationOslo University HospitalOsloNorway

Personalised recommendations