Overcoming the Challenges of siRNA Activation of Innate Immunity: Design Better Therapeutic siRNAs

  • Mouldy Sioud
Part of the Methods in Molecular Biology book series (MIMB, volume 1218)


RNA interference (RNAi) is a conserved regulatory mechanism of posttranscriptional gene silencing triggered by either endogenously (e.g. microRNAs) or exogenously double-stranded RNA as small interfering (si) RNAs. To date, the use of siRNA (21-nt) has become a standard laboratory tool to silence gene expression in mammalian cells in-vitro and in-vivo. The methodology also holds promise for treating a diversity of human diseases. However, one of the challenges of making siRNAs as therapeutic drugs includes the activation of innate immunity and silencing of unwanted genes. Therefore, the use of siRNAs in functional genomics and human therapies depends on the development of strategies to overcome siRNA unwanted effects. This chapter highlights some efficient strategies aimed at separating gene silencing from immunostimulation and improving siRNA gene silencing specificity.

Key words

RNAi siRNA Innate immunity Toll-like receptors 2′-Ribose modifications Off-target effects Dendritic cells Cancer vaccines 


  1. 1.
    Jorgensen R (1990) Altered gene expression in plants due to trans interactions between homologous genes. Trends Biotechnol 8:340–344PubMedCrossRefGoogle Scholar
  2. 2.
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806–811PubMedCrossRefGoogle Scholar
  3. 3.
    Svoboda P, Stein P, Hayashi H, Schultz RM (2000) Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development 127:4147–4156PubMedGoogle Scholar
  4. 4.
    Sen GC (2001) Viruses and interferons. Annu Rev Microbiol 55:255–281PubMedCrossRefGoogle Scholar
  5. 5.
    Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33PubMedCrossRefGoogle Scholar
  6. 6.
    Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411: 494–498PubMedCrossRefGoogle Scholar
  8. 8.
    Sioud M (2004) Therapeutic siRNAs. Trends Pharmacol Sci 25:22–28PubMedCrossRefGoogle Scholar
  9. 9.
    Hannon GJ, Rossi JJ (2004) Unlocking the potential of the human genome with RNA interference. Nature 431:371–378PubMedCrossRefGoogle Scholar
  10. 10.
    Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua-Tor L, Hannon GJ (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437–1441PubMedCrossRefGoogle Scholar
  11. 11.
    Song JJ, Smith SK, Hannon GJ, Joshua-Tor L (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305:1434–1447PubMedCrossRefGoogle Scholar
  12. 12.
    Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123: 607–620PubMedCrossRefGoogle Scholar
  13. 13.
    Rand TA, Petersen S, Du F et al (2005) Wang: Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123: 621–629PubMedCrossRefGoogle Scholar
  14. 14.
    Ma JB, Yuan YR, Meister G, Pei Y, Tuschl T, Partel DJ (2005) Structural basis for 5'-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434:666–670PubMedCrossRefGoogle Scholar
  15. 15.
    Sioud M, Sorensen DR (2003) Cationic liposome-mediated delivery of siRNAs in adult mice. Biochem Biophys Res Commun 312: 122–125Google Scholar
  16. 16.
    Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G, Linsley PS (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21:635–637PubMedCrossRefGoogle Scholar
  17. 17.
    Semizarov D, Frost L, Sarthy A, Kroeger P, Halbert DN, Fesik SW (2003) Specificity of short interfering RNA determined through gene expression signatures. Proc Natl Acad Sci U S A 100:6347–6352PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BR (2003) Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 5:834–839PubMedCrossRefGoogle Scholar
  19. 19.
    Parkin J, Cohen B (2001) An overview of the immune system. Lancet 357:1777–1789PubMedCrossRefGoogle Scholar
  20. 20.
    Janeway CA, Medzhitov R Jr (2002) Innate immune recognition. Annu Rev Immunol 20: 197–216PubMedCrossRefGoogle Scholar
  21. 21.
    Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17:1–14PubMedCrossRefGoogle Scholar
  22. 22.
    Sioud M (2006) Innate sensing of self and non-self RNAs by Toll-like receptors. Trends Mol Med 12:167–716PubMedCrossRefGoogle Scholar
  23. 23.
    Brennan CA, Anderson KV (2004) Drosophila: the genetics of innate immune recognition and response. Annu Rev Immunol 22:457–483PubMedCrossRefGoogle Scholar
  24. 24.
    Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973–983PubMedCrossRefGoogle Scholar
  25. 25.
    Akira S, Takeda K (2004) Toll-like receptor signaling. Nat Rev Immunol 4:499–511PubMedCrossRefGoogle Scholar
  26. 26.
    Li S, Peters GA, Ding K, Zhang X, Qin J, Sen GC (2006) Molecular basis for PKR activation by PACT or dsRNA. Proc Natl Acad Sci U S A 103:10005–10010PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Samuel CE (2001) Antiviral actions of interferons. Clin Microbiol Rev 14:778–809PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii KJ, Yamaguchi O, Otsu K, Tsujimura T, Koh CS, Reis e Sousa C, Matsuura Y, Fujita T, Akira S (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101–105PubMedCrossRefGoogle Scholar
  29. 29.
    Kato H, Sato S, Yoneyama M, Yamamoto M, Uematsu S, Matsui K, Tsujimura T, Takeda K, Fujita T, Takeuchi O, Akira S (2005) Cell type-specific involvement of RIG-I in antiviral response. Immunity 23:19–28PubMedCrossRefGoogle Scholar
  30. 30.
    Meylan E, Tschopp J, Karin M (2006) Intracellular pattern recognition receptors in the host response. Nature 442:39–44PubMedCrossRefGoogle Scholar
  31. 31.
    Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732–738PubMedCrossRefGoogle Scholar
  32. 32.
    Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303:1526–1529PubMedCrossRefGoogle Scholar
  33. 33.
    Krieg AM (2002) CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 20:709–760PubMedCrossRefGoogle Scholar
  34. 34.
    Brentano F, Kyburz D, Schorr O, Gay R, Gay S (2005) The role of Toll-like receptor signaling in the pathogenesis of arthritis. Cell Immunol 233:90–96PubMedCrossRefGoogle Scholar
  35. 35.
    Cao W, Liu YJ (2007) Innate immune functions of plasmacytoid dendritic cells. Curr Opin Immunol 19:24–30PubMedCrossRefGoogle Scholar
  36. 36.
    Kariko K, Bhuyan P, Capodici J, Weissman D (2004) Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J Immunol 172:6545–6549PubMedCrossRefGoogle Scholar
  37. 37.
    Sioud M (2005) Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J Mol Biol 348:1079–1090PubMedCrossRefGoogle Scholar
  38. 38.
    Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S, Noronha A, Manoharan M, Akira S, de Fougerolles A, Endres S, Hartmann G (2005) Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 11: 263–270PubMedCrossRefGoogle Scholar
  39. 39.
    Judge AD, Sood V, Shaw JR, Fang D, McClintock K, MacLachlan I (2005) Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 23:457–462PubMedCrossRefGoogle Scholar
  40. 40.
    Sioud M (2006) Single-stranded small interfering RNA are more immunostimulatory than their double-stranded counterparts: a central role for 2'-hydroxyl uridines in immune responses. Eur J Immunol 36:1222–1230PubMedCrossRefGoogle Scholar
  41. 41.
    Cekaite L, Furset G, Hovig E, Sioud M (2007) Gene expression analysis in blood cells in response to unmodified and 2'-modified siRNAs reveals TLR-dependent and independent effects. J Mol Biol 365:90–108PubMedCrossRefGoogle Scholar
  42. 42.
    Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K, Breen W, Hartsough K, Machemer L, Radka S, Jadhav V, Vaish N, Zinnen S, Vargeese C, Bowman K, Shaffer CS, Jeffs LB, Judge A, MacLachlan I, Polisky B (2005) Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 23:1002–1007PubMedCrossRefGoogle Scholar
  43. 43.
    Flatekval GF, Sioud M (2009) Modulation of dendritic cell function and maturation with mono- and bifunctional small interfering RNAs targeting indoleamine 2,3 dioxygenase. Immunology 128:e837–e848PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Judge AD, Bola G, Lee AC, MacLachlan I (2006) Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol Ther 13:494–505PubMedCrossRefGoogle Scholar
  45. 45.
    Bell JK, Askins J, Hall PR, Davies DR, Segal DM (2006) The dsRNA binding site of human Toll-like receptor 3. Proc Natl Acad Sci U S A 103:8792–8797PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Kariko K, Buckstein M, Ni H, Weissman D (2005) Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23:165–175PubMedCrossRefGoogle Scholar
  47. 47.
    Sioud M (2007) RNA interference and innate immunity. Adv Drug Deliv Rev 59:153–163PubMedCrossRefGoogle Scholar
  48. 48.
    Sioud M, Furset G, Cekaite L (2007) Suppression of immunostimulatory siRNA-driven innate immune activation by 2'-modified RNAs. Biochem Biophys Res Commun 361:122–126PubMedCrossRefGoogle Scholar
  49. 49.
    Furset G, Floisand Y, Sioud M (2008) Impaired expression of indoleamine 2, 3-dioxygenase in monocyte-derived dendritic cells in response to Toll-like receptor-7/8 ligands. Immunology 123:263–271PubMedPubMedCentralGoogle Scholar
  50. 50.
    Robbins M, Judge A, Liang L, McClintock K, Yaworski E, MacLachlan I (2007) 2'-O-methyl-modified RNAs act as TLR7 antagonists. Mol Ther 15:1663–1669PubMedCrossRefGoogle Scholar
  51. 51.
    Marques JT, Devosse T, Wang D, Zamanian-Daryoush M, Serbinowski P, Hartmann R, Fujita T, Behlke MA, Williams BR (2006) A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells. Nat Biotechnol 24:559–565PubMedCrossRefGoogle Scholar
  52. 52.
    Robbins MA, Li M, Leung I, Li H, Boyer DV, Song Y, Behlke MA, Rossi JJ (2006) Stable expression of shRNAs in human CD34+ progenitor cells can avoid induction of interferon responses to siRNAs in vitro. Nat Biotechnol 24:566–571PubMedCrossRefGoogle Scholar
  53. 53.
    Sioud M (2006) RNA interference below the immune radar. Nat Biotechnol 24:521–522PubMedCrossRefGoogle Scholar
  54. 54.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297PubMedCrossRefGoogle Scholar
  55. 55.
    Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, Sohn SY, Cho Y, Zhang BT, Kim VN (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125:887–901PubMedCrossRefGoogle Scholar
  56. 56.
    Furset G, Sioud M (2007) Design of bifunctional siRNAs, combining immunostimulation and gene-silencing in one single siRNA molecule. Biochem Biophys Res Commun 352:642–649PubMedCrossRefGoogle Scholar
  57. 57.
    Hornung V, Ellegast J, Kim S, Brzozka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann KK, Schlee M, Endres S, Hartmann G (2006) 5'-Triphosphate RNA is the ligand for RIG-I. Science 314:994–997PubMedCrossRefGoogle Scholar
  58. 58.
    Cui S, Eisenächer K, Kirchhofer A, Brzózka K, Lammens A, Lammens K, Fujita T, Conzelmann KK, Krug A, Hopfner KP (2008) The C-terminal regulatory domain is the RNA 5'-triphosphate sensor of RIG-I. Mol Cell 29:169–179PubMedCrossRefGoogle Scholar
  59. 59.
    Kato H, Takeuchi O, Mikamo-Satoh E, Hirai R, Kawai T, Matsushita K, Hiiragi A, Dermody TS, Fujita T, Akira S (2008) Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J Exp Med 205:1601–1610PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Bao N, Lye KW, Barton MK (2004) MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev Cell 7:653–662PubMedCrossRefGoogle Scholar
  61. 61.
    Jackson AL, Burchard J, Leake D, Reynolds A, Schelter J, Guo J, Johnson JM, Lim L, Karpilow J, Nichols K, Marshall W, Khvorova A, Linsley PS (2006) Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA 12:1197–1205PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252PubMedCrossRefGoogle Scholar
  63. 63.
    Rossi M, Young JW (2005) Human dendritic cells: potent antigen-presenting cells at the crossroads of innate and adaptive immunity. J Immunol 175:1373–1381PubMedCrossRefGoogle Scholar
  64. 64.
    Pardoll D (2003) Does the immune system see tumors as foreign or self? Annu Rev Immunol 21:807–839PubMedCrossRefGoogle Scholar
  65. 65.
    Grutz G (2005) New insights into the molecular mechanism of interleukin-10-mediated immunosuppression. J Leukoc Biol 77:3–15PubMedGoogle Scholar
  66. 66.
    Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, Brown C, Mellor AL (1998) Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281: 1191–1193PubMedCrossRefGoogle Scholar
  67. 67.
    Alexander WS, Hilton DJ (2004) The role of suppressors of cytokine signaling (SOCS) proteins in regulation of the immune response. Annu Rev Immunol 22:503–529PubMedCrossRefGoogle Scholar
  68. 68.
    Shen L, Evel-Kabler K, Strube R, Chen SY (2004) Silencing of SOCS1 enhances antigen presentation by dendritic cells and antigen-specific anti-tumor immunity. Nat Biotechnol 22:1546–1553PubMedCrossRefGoogle Scholar
  69. 69.
    Sioud M, Saebøe-Larsen S, Hetland TE, Kaern J, Mobergslien A, Kvalheim G (2013) Silencing of indoleamine 2,3-dioxygenase enhances dendritic cell immunogenicity and antitumour immunity in cancer patients. Int J Oncol 43: 280–288PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Immunology, Institute for Cancer ResearchOslo University HospitalMontebello, OsloNorway
  2. 2.Department of Immunology, Institute for Cancer ResearchThe Norwegian Radium HospitalMontebello, OsloNorway

Personalised recommendations