Strategies for siRNA Navigation to Desired Cells

  • Mouldy SioudEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1218)


Whilst small interfering (si) RNAs have emerged as a promising therapeutic modality for treating a diversity of human diseases, delivery constitutes the most serious obstacle to siRNA drug development. As the most used delivery agents can enter all cell types, specificity must be built into the delivery agents or directly attached to the siRNA molecules. The use of antibodies, peptides, Peptide-Fc fusions, aptamers, and other targeting ligands has now enabled efficient gene silencing in the desired cell populations/tissues in vitro and in vivo. The present review summarizes these current innovations, which are important for the design of safe therapeutic siRNAs.

Key words

RNAi siRNA Nanoparticles Hormone peptides Immune cells Endocytose Phage display 


  1. 1.
    Garanger E, Boturyn D, Dumy P (2007) Tumor targeting with RGD peptide ligands-design of new molecular conjugates for imaging and therapy. Anticancer Agents Med Chem 7:552–558PubMedCrossRefGoogle Scholar
  2. 2.
    Shadidi M, Sioud M (2003) Selective targeting of cancer cells using synthetic peptides. Drug Resist Updat 6:363–371PubMedCrossRefGoogle Scholar
  3. 3.
    Sioud M (2009) Targeted delivery of antisense oligonucleotides and siRNAs into mammalian cells. Methods Mol Biol 487:61–82PubMedGoogle Scholar
  4. 4.
    Takeshita F, Hokaiwado N, Honma K, Banas A, Ochiya T (2009) Local and systemic delivery of siRNAs for oligonucleotide therapy. Methods Mol Biol 487:83–92PubMedGoogle Scholar
  5. 5.
    Moore A, Medarova Z (2009) Imaging of siRNA delivery and silencing. Methods Mol Biol 487:93–110PubMedGoogle Scholar
  6. 6.
    Mykhaylyk O, Zelphati O, Hammerschmid E, Anton M, Rosenecker J, Plank C (2009) Recent advances in magnetofection and its potential to deliver siRNAs in vitro. Methods Mol Biol 487:111–146PubMedGoogle Scholar
  7. 7.
    Sioud M (2005) On the delivery of small interfering RNAs into mammalian cells. Expert Opin Drug Deliv 2:639–651PubMedCrossRefGoogle Scholar
  8. 8.
    Ross J, Gray K, Schenkein D, Greene B, Gray GS, Shulok J, Worland PJ, Celniker A, Rolfe M (2003) Antibody-based therapeutics in oncology. Expert Rev Anticancer Ther 3:107–121PubMedCrossRefGoogle Scholar
  9. 9.
    Song E, Zhu P, Lee SK, Chowdhury D, Kussman S, Dykxhoorn DM, Feng Y, Palliser D, Weiner DB, Shankar P, Marasco WA, Lieberman J (2005) Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 23:709–717PubMedCrossRefGoogle Scholar
  10. 10.
    Peer D, Zhu P, Carman CV, Lieberman J, Shimaoka M (2007) Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1. Proc Natl Acad Sci U S A 104:4095–4100PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Lee JH, Engler JA, Collawn JF, Moore BA (2001) Receptor mediated uptake of peptides that bind the human transferrin receptor. Eur J Biochem 268:2004–2012PubMedCrossRefGoogle Scholar
  12. 12.
    Zheng X, Vladau C, Zhang X, Suzuki M, Ichim TE, Zhang ZX, Li M, Carrier E, Garcia B, Jevnikar AM, Min WP (2009) A novel in vivo siRNA delivery system specifically targeting dendritic cells and silencing CD40 genes for immunomodulation. Blood 113:2646–2654PubMedCrossRefGoogle Scholar
  13. 13.
    Xia CF, Boado RJ, Pardridge WM (2009) Antibody-mediated targeting of siRNA via the human insulin receptor using avidin-biotin technology. Mol Pharm 6(3):747–751, PMID, 19093871PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Kumar P, Ban HS, Kim SS, Wu H, Pearson T, Greiner DL, Laouar A, Yao J, Haridas V, Habiro K, Yang YG, Jeong JH, Lee KY, Kim YH, Kim SW, Peipp M, Fey GH, Manjunath N, Shultz LD, Lee SK, Shankar P (2008) T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell 134:577–586PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Peer D, Park EJ, Morishita Y et al (2008) Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science 319:627–630PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Aina OH, Sroka TC, Chen ML, Lam KS (2002) Therapeutic cancer targeting peptides. Biopolymers 66:184–199PubMedCrossRefGoogle Scholar
  17. 17.
    Kumar P, Wu H, McBride JL et al (2007) Transvascular delivery of small interfering RNA to the central nervous system. Nature 448:39–43PubMedCrossRefGoogle Scholar
  18. 18.
    Heidel JD, Yu Z, Liu JYC et al (2007) Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proc Natl Acad Sci U S A 104:5715–5721PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Patel DS, Dessalew N, Iqbal P, Bharatam PV (2007) Structure-based approaches in the design of GSK-3 selective inhibitors. Curr Protein Pept Sci 8:352–364PubMedCrossRefGoogle Scholar
  20. 20.
    Romanov VI (2003) Phage display selection and evaluation of cancer drug targets. Curr Cancer Drug Targets 3:119–129PubMedCrossRefGoogle Scholar
  21. 21.
    Houghten RA, Pinilla C, Blondelle SE, Appel JR, Dooley CT, Cuervo JH (1991) Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature 354:84–86PubMedCrossRefGoogle Scholar
  22. 22.
    Fukuda MN, Ohyama C, Lowitz K, Matsuo O, Pasqualini R, Ruoslahti E, Fukuda M (2000) A peptide mimic of E-selectin ligand inhibits sialyl Lewis X-dependent lung colonization of tumor cells. Cancer Res 60:450–456PubMedGoogle Scholar
  23. 23.
    Campa MJ, Serlin SB, Patz EF (2002) Development of novel tumor imaging agents with phage-display combinatorial peptide libraries. Acad Radiol 9:927–932PubMedCrossRefGoogle Scholar
  24. 24.
    Alaoui-Jamali MA, Qiang H (2003) The interface between ErbB and non-ErbB receptors in tumor invasion: clinical implications and opportunities for target discovery. Drug Resist Updat 6:95–107PubMedCrossRefGoogle Scholar
  25. 25.
    Urbanelli L, Ronchini C, Fontana L, Menard S, Orlandi R, Monaci P (2001) Targeted gene transduction of mammalian cells expressing the HER2/neu receptor by filamentous phage. J Mol Biol 313:965–976PubMedCrossRefGoogle Scholar
  26. 26.
    Karasseva NG, Glinsky VV, Chen NX, Komatireddy R, Quinn TP (2002) Identification and characterization of peptides that bind human ErbB-2 selected from a bacteriophage display library. J Protein Chem 21:287–296PubMedCrossRefGoogle Scholar
  27. 27.
    Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29:15–18PubMedCrossRefGoogle Scholar
  28. 28.
    Pasqualini R, Ruoslahti E (1996) Organ targeting in-vivo using phage display peptide libraries. Nature 380:364–366PubMedCrossRefGoogle Scholar
  29. 29.
    Pasqualini R, Koivunen E, Ruoslahti E (1997) Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol 15:542–546PubMedCrossRefGoogle Scholar
  30. 30.
    Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, Ashmun RA, Shapiro LH, Arap W, Ruoslahti E (2000) Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 60:272–722Google Scholar
  31. 31.
    Arap W, Pasqualini R, Ruoslahti E (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279:377–380PubMedCrossRefGoogle Scholar
  32. 32.
    de Groot FM, Broxterman HJ, Adams HP, van Vliet A, Tesser GI, Elderkamp YW, Schraa AJ, Kok RJ, Molema G, Pinedo HM, Scheeren HW (2002) Design, synthesis, and biological evaluation of a dual tumor-specific motive containing integrin-targeted plasmin-cleavable doxorubicin prodrug. Mol Cancer Ther 1:901–911PubMedGoogle Scholar
  33. 33.
    Cheng JQ, Jiang X, Fraser M, Li M, Dan HC, Sun M, Tsang BK (2002) Role of X-linked inhibitor of apoptosis proteins in chemoresistance in ovarian cancer: possible involvement of the phosphoinositide-3 kinase/Akt pathway. Drug Resist Updat 5:131–146PubMedCrossRefGoogle Scholar
  34. 34.
    Su ZF, Liu G, Gupta S, Zhu Z, Rusckowski M, Hnatowich DJ (2002) In vitro and in vivo evaluation of a Technetium-99m-labeled cyclic RGD peptide as a specific marker of alpha(v)beta(3) integrin for tumor imaging. Bioconjug Chem 13:561–570PubMedCrossRefGoogle Scholar
  35. 35.
    Wang XL, Xu R, Wu X, Gillespie D, Jensen R, Lu ZR (2009) Targeted systemic delivery of a therapeutic siRNA with a multifunctional carrier controls tumor proliferation in mice. Mol Pharm 6(3):738–746, PMID: 19296675PubMedCrossRefGoogle Scholar
  36. 36.
    Schiffelers RM, Ansari A, Xu J et al (2004) Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res 32:e149PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Alam MR, Ming X, Fisher M, Lackey JG, Rajeev KG, Manoharan M, Juliano RL (2011) Mutivalent cyclic RGD conjugates for targeted delivery of small interfering RNA. Bioconjug chem 22:1673–1681PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Cesarone G, Edupuganti OP, Chen CP, Wickstrom E (2007) Insulin receptor substrate 1 knockdown in human MCF7 ER + breast cancer cells by nuclease-resistant IRS1 siRNA conjugated to a disulfide-bridged d-peptide analogue of insulin-like growth factor 1. Bioconjug Chem 18:1831–1840PubMedCrossRefGoogle Scholar
  39. 39.
    Shadidi M, Sioud M (2003) Identification of novel carrier peptides for the specific delivery of therapeutics into cancer cells. FASEB J 17:256–258PubMedGoogle Scholar
  40. 40.
    Wang XF, Birringer M, Dong LF et al (2007) A peptide conjugate of vitamin E succinate targets breast cancer cells with high ErbB2 expression. Cancer Res 67:3337–3344PubMedCrossRefGoogle Scholar
  41. 41.
    Körner M, Reubi JC (2007) NPY receptors in human cancer: a review of current knowledge. Peptides 28:419–425PubMedCrossRefGoogle Scholar
  42. 42.
    Riccabona G, Decristoforo C (2003) Peptide targeted imaging of cancer. Cancer Biother Radiopharm 18:675–687PubMedCrossRefGoogle Scholar
  43. 43.
    Hoffman TJ, Quinn TP, Volkert WA (2001) Radiometallated receptor-avid peptide conjugates for specific in vivo targeting of cancer cells. Nucl Med Biol 28:527–539PubMedCrossRefGoogle Scholar
  44. 44.
    Dharap SS, Minko T (2003) Targeted proapoptotic LHRH-BH3 peptide. Pharm Res 20:889–896PubMedCrossRefGoogle Scholar
  45. 45.
    Shir A, Levitzki A (2001) Gene therapy for glioblastoma: future perspective for delivery systems and molecular targets. Cell Mol Neurobiol 21:645–656PubMedCrossRefGoogle Scholar
  46. 46.
    Kim SH, Jeong JH, Lee SH, Kim SW, Park TG (2008) LHRH receptor-mediated delivery of siRNA using polyelectrolyte complex micelles self-assembled from siRNA-PEG-LHRH conjugate and PEI. Bioconjug Chem 19:2156–2162PubMedCrossRefGoogle Scholar
  47. 47.
    Huang PS, Oliff A (2001) Drug-targeting strategies in cancer therapy. Curr Opin Genet Dev 11:104–110PubMedCrossRefGoogle Scholar
  48. 48.
    Sioud M, Mobergslien A (2012) Efficient siRNA targeted delivery into cancer cells by gastrin-releasing peptides. Bioconjug Chem 23:1040–1049PubMedCrossRefGoogle Scholar
  49. 49.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510PubMedCrossRefGoogle Scholar
  50. 50.
    Chu TC, Twu KY, Ellington AD et al (2006) Aptamer mediated siRNA delivery. Nucleic Acids Res 34:e73PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    McNamara JO, Andrechek ER, Wang Y, Viles KD, Rempel ER, Gilboa E, Sullenger BA, Giangrande PH (2006) Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol 24:1005–1015PubMedCrossRefGoogle Scholar
  52. 52.
    Wullner U, Neef I, Eller A, Kleines M, Tur MK, Barth S (2008) Cell-specific induction of apoptosis by rationally designed bivalent aptamer-siRNA transcripts silencing eukaryotic elongation factor 2. Curr Cancer Drug Targets 8:554–565PubMedCrossRefGoogle Scholar
  53. 53.
    Zhou J, Li H, Li S, Zaia J, Rossi JJ (2008) Novel dual inhibitory function aptamer-siRNA delivery system for HIV-1 therapy. Mol Ther 16:1481–1489PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Mikat V, Heckel A (2007) Light-dependent RNA interference with nucleobase-caged siRNAs. RNA 13:2341–2347PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Casey JP, Blidner RA, Monroe WT (2009) Caged siRNAs for spatiotemporal control of gene silencing. Mol Pharm 6:669–685PubMedCrossRefGoogle Scholar
  56. 56.
    Yoshizawa T, Hattori Y, Hakoshima M, Koga K, Maitani Y (2008) Folate-linked lipid-based nanoparticles for synthetic siRNA delivery in KB tumor xenografts. Eur J Pharm Biopharm 70:718–725PubMedCrossRefGoogle Scholar
  57. 57.
    Soutschek J, Akinc A, Bramlage B et al (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432:173–178PubMedCrossRefGoogle Scholar
  58. 58.
    Oishi M, Nagasaki Y, Itaka K et al (2005) Lactosylated poly(ethylene glycol)-siRNA conjugate through acid-labile β-thiopropionate linkage to construct pH-sensitive polyion complex micelles achieving enhanced gene silencing in hepatoma cells. J Am Chem Soc 127:1624–1625PubMedCrossRefGoogle Scholar
  59. 59.
    Wheeler L, Trifonova R, Vrbanac V, Basar E, McKernan S et al (2011) CD4 aptamer-siRNA chimeras inhibit HIV infection in primary CD4+ cells in vitro and in polarized human cervicovaginal explants and prevent vaginal transmission in humanized mice. J Clin Invest 121:2401–2412PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Kim SS, Ye C, Kumar P, Chiu I, Subramanya S, Wu H et al (2010) Targeted delivery of siRNA to macrophages for anti-inflammatory treatment. Mol Ther 18:993–1001PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Ye C, Choi JG, Abraham S, Wu H, Diaz D, Terreros D, Shankar P, Manjunath N (2012) Human macrophage and dendritic cell-specific silencing of high-mobility group protein B1 ameliorates sepsis in a humanized mouse model. Proc Natl Acad Sci U S A 109:21052–21057PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Yu SS, Lau CM, Barham WJ, Onishko HM, Nelson CE, Li H, Smith CA, Yull FE, Duvall CL, Giogio TD (2013) Macrophage-specific RNA interference targeting via Click, mannosylated polymeric micelles. Mol Pharm 10:975–987PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Kortylewski M, Swiderski P, Herrmann A et al (2009) In vivo delivery of siRNA to immune cells by conjugation to a TLR9 agonist enhances antitumor immune response. Nat Biotechnol 27:925–932PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Leuschner F, Dutta P, Gorbatov R et al (2011) Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat Biotechnol 29:1005–1010PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Sioud M, Skorstad G, Mobergslien A, Sæbøe-Larssen S (2013) A novel peptide carrier for efficient targeting of antigens and nucleic acids to dendritic cells. FASEB J 8:3272–3283CrossRefGoogle Scholar
  66. 66.
    Hannon GJ, Rossi JJ (2004) Unlocking the potential of the human genome with RNA interference. Nature 431:371–378PubMedCrossRefGoogle Scholar
  67. 67.
    Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, Marion P, Salazar F, Kay MA (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441:537–541PubMedCrossRefGoogle Scholar
  68. 68.
    Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G, Linsley PS (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21:635–637PubMedCrossRefGoogle Scholar
  69. 69.
    Lin X, Ruan X, Anderson MG, McDowell JA, Kroeger PE, Fesik SW, Shen Y (2005) siRNA-mediated off-target gene silencing triggered by a 7 nt complementation. Nucleic Acids Res 33:4527–4535PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Van de Wetering M et al (2003) Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep 4:609–615PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    McIntyre GJ, Fanning GC (2006) Design and cloning strategies for constructing shRNA expression vectors. BMC Biotechnol 6:1–10PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Saukkonen K, Hemminki A (2004) Tissue-specific promoters for cancer gene therapy. Expert Opin Biol Ther 4:683–696PubMedCrossRefGoogle Scholar
  73. 73.
    Altieri DC (2003) Validating survivin as a cancer therapeutic target. Nat Rev Cancer 3:46–54PubMedCrossRefGoogle Scholar
  74. 74.
    Huynh T, Wälchli S, Sioud M (2006) Transcriptional targeting of small interfering RNAs into cancer cells. Biochem Biophys Res Commun 350:854–859PubMedCrossRefGoogle Scholar
  75. 75.
    Song J, Pang S, Lu Y, Yokoyama KK, Zheng JY, Chiu R (2004) Gene silencing in androgen-responsive prostate cancer cells from the tissue-specific prostate-specific antigen promoter. Cancer Res 64:7661–7663PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Departments of Immunology, Institute for Cancer Research, The Norwegian Radium HospitalRadiumhospitalet-Rikshospitalet University HospitalOsloNorway

Personalised recommendations