Advertisement

Plasmodesmata pp 259-274 | Cite as

Probing Protein Targeting to Plasmodesmata Using Fluorescence Recovery After Photo-Bleaching

  • Kathryn M. WrightEmail author
  • Katrin M. MacKenzie
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1217)

Abstract

Fluorescence recovery after photo-bleaching (FRAP) involves the irreversible bleaching of a fluorescent protein within a specific area of the cell using a high-intensity laser. The recovery of fluorescence represents the movement of new protein into this area and can therefore be used to investigate factors involved in this movement. Here we describe a FRAP method to investigate the effect of a range of pharmacological agents on the targeting of Tobacco mosaic virus movement protein to plasmodesmata.

Key words

Tobacco mosaic virus Movement protein Plasmodesmata Fluorescence recovery after photo-bleaching 

Notes

Acknowledgements

This work was funded by the Scottish Government Rural and Environmental Science and Analytical Services Division (RESAS). We thank D.A. Elston and P.J. Wright for critical review and helpful comments.

References

  1. 1.
    Atkins D, Hull R, Wells B et al (1991) The Tobacco mosaic virus 30K movement protein in transgenic tobacco plants is localized to plasmodesmata. J Gen Virol 72:209–211PubMedCrossRefGoogle Scholar
  2. 2.
    Ding B, Haudenshield JS, Hull RJ et al (1992) Secondary plasmodesmata are specific sites of localization of the Tobacco mosaic virus movement protein in transgenic tobacco plants. Plant Cell 4:915–928PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Itaya A, Hickman H, Bao Y et al (1997) Cell-to-cell trafficking of Cucumber mosaic virus movement protein: green fluorescent protein fusion produced by biolistic gene bombardment in tobacco. Plant J 12:1223–1230CrossRefGoogle Scholar
  4. 4.
    Itaya A, Woo Y-M, Masuta C et al (1998) Developmental regulation of intercellular protein trafficking through plasmodesmata in tobacco leaf epidermis. Plant Physiol 118:373–385PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Roberts IM, Boevink P, Roberts AG et al (2001) Dynamic changes in the frequency and architecture of plasmodesmata during the sink-source transition in tobacco leaves. Protoplasma 218:31–44PubMedCrossRefGoogle Scholar
  6. 6.
    Liu C, Nelson RS (2013) The cell biology of Tobacco mosaic virus replication and movement. Front Plant Sci 4:12. doi: 10.3389/fpls.2013.00012 PubMedPubMedCentralGoogle Scholar
  7. 7.
    Wright KM, Wood NT, Roberts AG et al (2007) Targeting of TMV movement protein to plasmodesmata requires the actin/ER network; evidence from FRAP. Traffic 8:21–31PubMedCrossRefGoogle Scholar
  8. 8.
    Brandizzi F, Snapp EL, Roberts AG et al (2002) Membrane protein transport between the endoplasmic reticulum and the Golgi in tobacco leaves is energy dependent but cytoskeleton independent: evidence from selective photobleaching. Plant Cell 14:1293–1309PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Nehls S, Snapp EL, Cole NB et al (2000) Dynamics and retention of misfolded proteins in native ER membranes. Nat Cell Biol 2:288–295PubMedCrossRefGoogle Scholar
  10. 10.
    Runions J, Brach T, Kuhner S et al (2006) Photoactivation of GFP reveals protein dynamics within the endoplasmic reticulum membrane. J Exp Bot 57:43–50PubMedCrossRefGoogle Scholar
  11. 11.
    Peña EJ, Heinlein M (2012) RNA transport during TMV cell-to-cell movement. Front Plant Sci 3:193. doi: 10.3389/fpls.2012.00193 PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Niehl A, Peña EJ, Amari K et al (2013) Microtubules in viral replication and transport. Plant J 75:290–308PubMedCrossRefGoogle Scholar
  13. 13.
    Ruiz MT, Voinnet O, Baulcombe DC (1998) Initiation and maintenance of virus-induced gene silencing. Plant Cell 10:937–946PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Gillespie T, Boevink P, Haupt S et al (2002) Functional analysis of a DNA-shuffled movement protein reveals that microtubules are dispensable for the cell-to-cell movement of Tobacco mosaic virus. Plant Cell 14:1207–1222PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Latijnhouwers M, Hawes C, Carvalho C et al (2005) An Arabidopsis GRIP domain protein locates to the trans-Golgi and binds the small GTPase ARL1. Plant J 44:459–470PubMedCrossRefGoogle Scholar
  16. 16.
    Sheahan MB, Staiger CJ, Rose RJ et al (2004) A green fluorescent protein fusion to actin-binding domain 2 of Arabidopsis fimbrin highlights new features of a dynamic actin cytoskeleton in live plant cells. Plant Physiol 136:3968–3978PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Genstat (2012) Genstat for Windows release 15.1. VSM International Ltd, Hemel Hempstead, HertfordshireGoogle Scholar
  18. 18.
    Lyalin OO, Lukoyanova SA (1993) Effects of kinetin and ABA on parameters of root exudation. Fiziol Rast 40:368–374Google Scholar
  19. 19.
    Goodin MM, Zaitlin D, Naidu RA et al (2008) Nicotiana benthamiana: its history and future as a model for plant-pathogen interactions. Mol Plant Microbe Interact 21:1015–1026PubMedCrossRefGoogle Scholar
  20. 20.
    Sleat DE, Turner PC, Finch JT et al (1986) Packaging of recombinant RNA molecules into pseudovirus particles directed by the origin-of-assembly sequence from tobacco mosaic virus RNA. Virology 155:299–308PubMedCrossRefGoogle Scholar
  21. 21.
    Boyko V, Ferralli J, Heinlein M (2000) Cell-to-cell movement of TMV RNA is temperature-dependent and corresponds to the association of movement protein with microtubules. Plant J 22:315–325PubMedCrossRefGoogle Scholar
  22. 22.
    Vidali L, Rounds CM, Hepler PK et al (2009) Lifeact-mEGFP reveals a dynamic apical F-actin network in tip growing plant cells. PLoS One 4:e5744. doi: 10.1371/journal.pone.0005744 PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Goodbody K, Lloyd CW (1990) Actin filaments line up across Tradescantia epidermal cells, anticipating wound-induced division planes. Protoplasma 157:92–101CrossRefGoogle Scholar
  24. 24.
    Wasteneys GO, Willingale-Theune J, Menzel D (1997) Freeze shattering: a simple and effective method for permeabilizing higher plant cell walls. J Microsc 188:51–61PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Cell and Molecular Sciences GroupThe James Hutton InstituteInvergowrie, DundeeUK
  2. 2.Biomathematics and Statistics Scotland, Dundee UnitInvergowrie, DundeeUK

Personalised recommendations