Advertisement

Calculation of Binding Free Energies

  • Vytautas Gapsys
  • Servaas Michielssens
  • Jan Henning Peters
  • Bert L. de GrootEmail author
  • Hadas Leonov
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1215)

Abstract

Molecular dynamics simulations enable access to free energy differences governing the driving force underlying all biological processes. In the current chapter we describe alchemical methods allowing the calculation of relative free energy differences. We concentrate on the binding free energies that can be obtained using non-equilibrium approaches based on the Crooks Fluctuation Theorem. Together with the theoretical background, the chapter covers practical aspects of hybrid topology generation, simulation setup, and free energy estimation. An important aspect of the validation of a simulation setup is illustrated by means of calculating free energy differences along a full thermodynamic cycle. We provide a number of examples, including protein–ligand and protein–protein binding as well as ligand solvation free energy calculations.

Key words

Free energy Molecular dynamics Alchemical transitions Protein–ligand binding Protein–protein interaction Non-equilibrium methods Hybrid topology Crooks Fluctuation Theorem 

References

  1. 1.
    Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J Comput Phys 23(2):187–199CrossRefGoogle Scholar
  2. 2.
    Kirkwood JG (1935) Statistical mechanics of fluid mixtures. J Chem Phys 3:300–313CrossRefGoogle Scholar
  3. 3.
    Ben-Naim A (1992) Statistical thermodynamics for chemists and biochemists. Plenum Press, New YorkCrossRefGoogle Scholar
  4. 4.
    Chipot C, Pohorille A (eds) (2007) Free energy calculations. Theory and applications in chemistry and biology. Springer series in chemical physics, vol 86Google Scholar
  5. 5.
    Christ CD, Mark AE, van Gunsteren WF (2010) Basic ingredients of free energy calculations: a review. J Comput Chem 31(8):1569–1582. ISSN 1096-987X. doi:10.1002/jcc.21450. http://dx.doi.org/10.1002/jcc.21450Google Scholar
  6. 6.
    Michael S, David M (2013) An introduction to best practices in free energy calculations. In: Biomolecular simulations: methods and protocols. Methods in molecular biology, vol 924. Humana Press, New York, pp 271–311Google Scholar
  7. 7.
    Zwanzig RW (1954) High-temperature equation of state by a perturbation method. I. Nonpolar gases. J Chem Phys 22:1420–1426Google Scholar
  8. 8.
    Pohorille A, Jarzynski C, Chipot C (2010) Good practices in free-energy calculations. J Phys Chem B 114(32):10235–10253PubMedCrossRefGoogle Scholar
  9. 9.
    Landau LD (1938) Statistical physics. The Clarendon Press, OxfordGoogle Scholar
  10. 10.
    Lu N, Kofke DA (2001) Accuracy of free-energy perturbation calculations in molecular simulation. I. Modeling. J Chem Phys 114: 7303–7311Google Scholar
  11. 11.
    Lu N, Kofke DA (2001) Accuracy of free-energy perturbation calculations in molecular simulation. II. Heuristics. J Chem Phys 115: 6866–6875Google Scholar
  12. 12.
    Shirts MR, Pande VS (2005) Comparison of efficiency and bias of free energies computed by exponential averaging, the Bennett acceptance ratio, and thermodynamic integration. J Chem Phys 122(14):144107-1–144107-16Google Scholar
  13. 13.
    Bennett CH (1976) Efficient estimation of free energy differences from Monte Carlo data. J Comput Phys 22(2):245–268CrossRefGoogle Scholar
  14. 14.
    Shirts MR, Bair E, Hooker G, Pande VS (2003) Equilibrium free energies from nonequilibrium measurements using maximum-likelihood methods. Phys Rev Lett 91(14):140601PubMedCrossRefGoogle Scholar
  15. 15.
    Mezei M (1992) Polynomial path for the calculation of liquid state free energies from computer simulations tested on liquid water. J Comput Chem 13(5):651–656CrossRefGoogle Scholar
  16. 16.
    Steinbrecher T, Mobley DL, Case DA (2007) Nonlinear scaling schemes for Lennard-Jones interactions in free energy calculations. J Chem Phys 127:214108PubMedCrossRefGoogle Scholar
  17. 17.
    Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA (1992) The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem 13(8):1011–1021CrossRefGoogle Scholar
  18. 18.
    Shirts MR, Chodera JD (2008) Statistically optimal analysis of samples from multiple equilibrium states. J Chem Phys 129:124105PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Shenfeld DK, Xu H, Eastwood MP, Dror RO, Shaw DE (2009) Minimizing thermodynamic length to select intermediate states for free-energy calculations and replica-exchange simulations. Phys Rev E 80(4):046705CrossRefGoogle Scholar
  20. 20.
    Buelens FP, Grubmüller H (2012) Linear-scaling soft-core scheme for alchemical free energy calculations. J Comput Chem 33(1): 25–33PubMedCrossRefGoogle Scholar
  21. 21.
    Mazor M, Pettitt BM (1991) Convergence of the chemical potential in aqueous simulations. Mol Simul 6(1–3):1–4CrossRefGoogle Scholar
  22. 22.
    Mitchell MJ, McCammon JA (1991) Free energy difference calculations by thermodynamic integration: difficulties in obtaining a precise value. J Comput Chem 12(2):271–275CrossRefGoogle Scholar
  23. 23.
    Straatsma TP, McCammon JA (1991) Multiconfiguration thermodynamic integration. J Chem Phys 95:1175CrossRefGoogle Scholar
  24. 24.
    Jorge M, Garrido NM, Queimada AJ, Economou IG, Macedo EA (2010) Effect of the integration method on the accuracy and computational efficiency of free energy calculations using thermodynamic integration. J Chem Theory Comput 6(4):1018–1027CrossRefGoogle Scholar
  25. 25.
    Bruckner S, Boresch S (2011) Efficiency of alchemical free energy simulations. II. Improvements for thermodynamic integration. J Comput Chem 32(7):1320–1333Google Scholar
  26. 26.
    Jarzynski C (1997) Nonequilibrium equality for free energy differences. Phys Rev Lett 78(14):2690–2693CrossRefGoogle Scholar
  27. 27.
    Cuendet MA (2006) The Jarzynski identity derived from general hamiltonian or non-hamiltonian dynamics reproducing NVT or NPT ensembles. J Chem Phys 125:144109PubMedCrossRefGoogle Scholar
  28. 28.
    Hummer G (2001) Fast-growth thermodynamic integration: error and efficiency analysis. J Chem Phys 114:7330–7337CrossRefGoogle Scholar
  29. 29.
    Gore J, Ritort F, Bustamante C (2003) Bias and error in estimates of equilibrium free-energy differences from nonequilibrium measurements. Proc Natl Acad Sci USA 100(22): 12564–12569PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Crooks GE (1998) Nonequilibrium measurements of free energy differences for microscopically reversible Markovian systems. J Stat Phys 90(5–6):1481–1487CrossRefGoogle Scholar
  31. 31.
    Crooks GE (1999) Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys Rev E 60(3):2721–2726CrossRefGoogle Scholar
  32. 32.
    Chelli R, Marsili S, Barducci A, Procacci P (2007) Recovering the Crooks equation for dynamical systems in the isothermal-isobaric ensemble: a strategy based on the equations of motion. J Chem Phys 126:044502PubMedCrossRefGoogle Scholar
  33. 33.
    Nanda H, Lu N, Woolf TB (2005) Using non-Gaussian density functional fits to improve relative free energy calculations. J Chem Phys 122(13):134110-1–134110-8Google Scholar
  34. 34.
    Maragakis P, Ritort F, Bustamante C, Karplus M, Crooks GE (2008) Bayesian estimates of free energies from nonequilibrium work data in the presence of instrument noise. J Chem Phys 129:024102PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Goette M, Grubmüller H (2009) Accuracy and convergence of free energy differences calculated from nonequilibrium switching processes. J Comput Chem 30(3):447–456PubMedCrossRefGoogle Scholar
  36. 36.
    Bramwell ST, Christensen K, Fortin J-Y, Holdsworth PCW, Jensen HJ, Lise S, López JM, Nicodemi M, Pinton J-F, Sellitto M (2000) Universal fluctuations in correlated systems. Phys Rev Lett 84(17):3744–3747PubMedCrossRefGoogle Scholar
  37. 37.
    Massey FJ Jr (1951) The Kolmogorov-Smirnov test for goodness of fit. J Am Stat Assoc 46(253):68–78CrossRefGoogle Scholar
  38. 38.
    Pearlman DA, Kollman PA (1991) The overlooked bond-stretching contribution in free energy perturbation calculations. J Chem Phys 94:4532–4545CrossRefGoogle Scholar
  39. 39.
    Pearlman DA (1994) A comparison of alternative approaches to free energy calculations. J Phys Chem 98(5):1487–1493CrossRefGoogle Scholar
  40. 40.
    Boresch S, Karplus M (1999) The role of bonded terms in free energy simulations. 2. Calculation of their influence on free energy differences of solvation. J Phys Chem A 103(1):119–136CrossRefGoogle Scholar
  41. 41.
    Boresch S, Karplus M (1999) The role of bonded terms in free energy simulations: 1. Theoretical analysis. J Phys Chem A 103(1): 103–118CrossRefGoogle Scholar
  42. 42.
    Bash PA, Singh UC, Langridge R, Kollman PA (1987) Free energy calculations by computer simulation. Science 236(4801):564–568PubMedCrossRefGoogle Scholar
  43. 43.
    Beutler TC, Mark AE, van Schaik RC, Gerber PR, van Gunsteren WF (1994) Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations. Chem Phys Lett 222(6):529–539. ISSN 0009-2614Google Scholar
  44. 44.
    Zacharias M, Straatsma TP, McCammon JA (1994) Separation-shifted scaling, a new scaling method for Lennard-Jones interactions in thermodynamic integration. J Chem Phys 100: 9025–9031CrossRefGoogle Scholar
  45. 45.
    Gapsys V, Seeliger D, de Groot BL (2012) New soft-core potential function for molecular dynamics based alchemical free energy calculations. J Chem Theory Comput 8(7): 2373–2382CrossRefGoogle Scholar
  46. 46.
    Tosco P, Balle T, Shiri F (2011) Open 3DALIGN: an open-source software aimed at unsupervised ligand alignment. J Comput Aided Mol Des 25(8):777–783PubMedCrossRefGoogle Scholar
  47. 47.
    Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3): 435–447CrossRefGoogle Scholar
  48. 48.
    Seeliger D, De Groot BL (2010) Protein thermostability calculations using alchemical free energy simulations. Biophys J 98(10):2309–2316. ISSN 0006-3495Google Scholar
  49. 49.
    O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: an open chemical toolbox. J Cheminf 3(1):1–14CrossRefGoogle Scholar
  50. 50.
    Sadowski J, Gasteiger J, Klebe G (1994) Comparison of automatic three-dimensional model builders using 639 X-ray structures. J Chem Inf Comput Sci 34(4):1000–1008CrossRefGoogle Scholar
  51. 51.
    Singh UC, Kollman PA (1984) An approach to computing electrostatic charges for molecules. J Comput Chem 5(2):129–145CrossRefGoogle Scholar
  52. 52.
    Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97(40):10269–10280CrossRefGoogle Scholar
  53. 53.
    Jakalian A, Bush BL, Jack DB, Bayly CI (2000) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. J Comput Chem 21(2):132–146CrossRefGoogle Scholar
  54. 54.
    Mobley DL, Dumont É, Chodera JD, Dill KA (2007) Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent. J Phys Chem B 111(9):2242–2254PubMedCrossRefGoogle Scholar
  55. 55.
    Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25(2):247–260PubMedCrossRefGoogle Scholar
  56. 56.
    Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174PubMedCrossRefGoogle Scholar
  57. 57.
    Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, MacKerell AD Jr (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31(4):671–690PubMedPubMedCentralGoogle Scholar
  58. 58.
    Vanommeslaeghe K, MacKerell AD Jr (2012) Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing. J Chem Inf Model 52(12): 3144–3154PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Vanommeslaeghe K, Raman EP, MacKerell AD Jr (2012) Automation of the CHARMM General Force Field (CGenFF) II: assignment of bonded parameters and partial atomic charges. J Chem Inf Model 52(12):3155–3168PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Malde AK, Zuo L, Breeze M, Stroet M, Poger D, Nair PC, Oostenbrink C, Mark AE (2011) An automated force field topology builder (ATB) and repository: version 1.0. J Chem Theory Comput 7(12):4026–4037CrossRefGoogle Scholar
  61. 61.
    Ribeiro AAST, Horta BAC, de Alencastro RB (2008) MKTOP: a program for automatic construction of molecular topologies. J Braz Chem Soc 19(7):1433–1435CrossRefGoogle Scholar
  62. 62.
    Rocklin GJ, Mobley DL, Dill KA, Hünenberger PH (2013) Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: an accurate correction scheme for electrostatic finite-size effects. J Chem Phys 139(18):184103.Google Scholar
  63. 63.
    Talhout R, Villa A, Mark AE, Engberts JBFN (2003) Understanding binding affinity: a combined isothermal titration calorimetry/molecular dynamics study of the binding of a series of hydrophobically modified benzamidinium chloride inhibitors to trypsin. J Am Chem Soc 125(35):10570–10579PubMedCrossRefGoogle Scholar
  64. 64.
    Marquart M, Walter J, Deisenhofer J, Bode W, Huber R (1983) The geometry of the reactive site and of the peptide groups in trypsin, trypsinogen and its complexes with inhibitors. Acta Crystallogr Sect B Struct Sci 39(4):480–490CrossRefGoogle Scholar
  65. 65.
    Lu W, Apostol I, Qasim MA, Warne N, Wynn R, Zhang WL, Anderson S, Chiang YW, Ogin E, Rothberg I, Ryan K, Laskowski M (1997) Binding of amino acid side-chains to S1 cavities of serine proteinases. J Mol Biol 266(2): 441–461PubMedCrossRefGoogle Scholar
  66. 66.
    Benedix A, Becker CM, de Groot BL, Caflisch A, Böckmann RA (2009) Predicting free energy changes using structural ensembles. Nat Methods 6(1):3–4PubMedCrossRefGoogle Scholar
  67. 67.
    Fujinaga M, Sielecki AR, Read RJ, Ardelt W, Laskowski M, James MNG (1987) Crystal and molecular structures of the complex of α-chymotrypsin with its inhibitor turkey ovomucoid third domain at 1.8 Å resolution. J Mol Biol 195(2):397–418PubMedCrossRefGoogle Scholar
  68. 68.
    Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins Struct Funct Bioinform 65(3): 712–725CrossRefGoogle Scholar
  69. 69.
    Mobley DL, Chodera JD, Dill KA (2006) On the use of orientational restraints and symmetry corrections in alchemical free energy calculations. J Chem Phys 125(8):084902. doi: 10.1063/1.2221683. http://link.aip.org/link/?JCP/125/084902/1Google Scholar
  70. 70.
    Shirts MR, Pitera JW, Swope WC, Pande VS (2003) Extremely precise free energy calculations of amino acid side chain analogs: comparison of common molecular mechanics force fields for proteins. J Chem Phys 119(11): 5740–5761CrossRefGoogle Scholar
  71. 71.
    Shirts MR, Mobley DL, Chodera JD, Pande VS (2007) Accurate and efficient corrections for missing dispersion interactions in molecular simulations. J Phys Chem B 111(45): 13052–13063PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Vytautas Gapsys
    • 1
  • Servaas Michielssens
    • 1
  • Jan Henning Peters
    • 1
  • Bert L. de Groot
    • 1
    Email author
  • Hadas Leonov
    • 1
  1. 1.Max Planck Institute for Biophysical ChemistryGöttingenGermany

Personalised recommendations