Cell-Based Computational Modeling of Vascular Morphogenesis Using Tissue Simulation Toolkit

  • Josephine T. Daub
  • Roeland M. H. MerksEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1214)


Computational modeling has become a widely used tool for unraveling the mechanisms of higher level cooperative cell behavior during vascular morphogenesis. However, experimenting with published simulation models or adding new assumptions to those models can be daunting for novice and even for experienced computational scientists. Here, we present a step-by-step, practical tutorial for building cell-based simulations of vascular morphogenesis using the Tissue Simulation Toolkit (TST). The TST is a freely available, open-source C++ library for developing simulations with the two-dimensional cellular Potts model, a stochastic, agent-based framework to simulate collective cell behavior. We will show the basic use of the TST to simulate and experiment with published simulations of vascular network formation. Then, we will present step-by-step instructions and explanations for building a recent simulation model of tumor angiogenesis. Demonstrated mechanisms include cell–cell adhesion, chemotaxis, cell elongation, haptotaxis, and haptokinesis.

Key words

Cellular Potts model Agent-based modeling Tissue Simulation Toolkit Angiogenesis Cell-based model Parameter study Quantification Glazier-Graner-Hogeweg model 


  1. 1.
    Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664PubMedCrossRefGoogle Scholar
  2. 2.
    Folkman J, Hauenschild C (1980) Angiogenesis in vitro. Nature 288:551–556PubMedCrossRefGoogle Scholar
  3. 3.
    Califano J, Reinhart-King C (2008) A balance of substrate mechanics and matrix chemistry regulates endothelial cell network assembly. Cell Mol Bioeng 1:122–132. doi: 10.1007/s12195-008-0022-x CrossRefGoogle Scholar
  4. 4.
    Oster GF, Murray JD, Harris AK (1983) Mechanical aspects of mesenchymal morphogenesis. J Embryol Exp Morphol 78:83–125PubMedGoogle Scholar
  5. 5.
    Manoussaki D, Lubkin S, Vernon R, Murray J (1996) A mechanical model for the formation of vascular networks in vitro. Acta Biotheor 44:271–282PubMedCrossRefGoogle Scholar
  6. 6.
    Manoussaki D (2003) A mechanochemical model of angiogenesis and vasculogenesis. ESAIM: Math Model Num 37:581–599. doi: 10.1051/m2an:2003046 CrossRefGoogle Scholar
  7. 7.
    Gamba A, Ambrosi D, Coniglio A, de Candia A, Di Talia S et al (2003) Percolation, morphogenesis, and Burgers dynamics in blood vessels formation. Phys Rev Lett 90:118101. doi: 10.1103/PhysRevLett.90.118101 PubMedCrossRefGoogle Scholar
  8. 8.
    Serini G, Ambrosi D, Giraudo E, Gamba A, Preziosi L et al (2003) Modeling the early stages of vascular network assembly. EMBO J 22:1771–1779. doi: 10.1093/emboj/cdg176 PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Ambrosi D, Gamba A, Serini G (2004) Cell directional and chemotaxis in vascular morphogenesis. B Math Biol 66:1851–1873. doi: 10.1016/j.blum.2004.04.004 CrossRefGoogle Scholar
  10. 10.
    Keller E (1970) Initiation of slime mold aggregation viewed as an instability. J Theor Biol 26:399–415PubMedCrossRefGoogle Scholar
  11. 11.
    Merks RMH, Glazier JA (2005) A cell-centered approach to developmental biology. Physica A 352:113–130. doi: 10.1016/j.physa.2004.12.028 CrossRefGoogle Scholar
  12. 12.
    Graner F, Glazier JA (1992) Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys Rev Lett 69:2013–2016PubMedCrossRefGoogle Scholar
  13. 13.
    Merks RMH, Brodsky SV, Goligorksy MS, Newman SA, Glazier JA (2006) Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Dev Biol 289:44–54. doi: 10.1016/j.ydbio.2005.10.003 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Palm MM, Merks RMH (2013) Vascular networks due to dynamically arrested crystalline ordering of elongated cells. Phys Rev E 87:012725. doi: 10.1103/PhysRevE.87.012725 CrossRefGoogle Scholar
  15. 15.
    Merks RMH, Perryn ED, Shirinifard A, Glazier JA (2008) Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth. PLoS Comp Biol 4:e1000163. doi: 10.1371/journal.pcbi.1000163 CrossRefGoogle Scholar
  16. 16.
    Szabó A, Mehes E, Kosa E, Czirok A (2008) Multicellular sprouting in vitro. Biophys J 95:2702–2710. doi: 10.1529/biophysj.108.129668 PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Köhn-Luque A, De Back W, Starruß J, Mattiotti A, Deutsch A et al (2011) Early embryonic vascular patterning by matrix-mediated paracrine signalling: a mathematical model study. PLoS One 6:e24175. doi: 10.1371/journal.pone.0024175.t001 PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Köhn-Luque A, de Back W, Yamaguchi Y, Yoshimura K, Herrero MA et al (2013) Dynamics of VEGF matrix-retention in vascular network patterning. Phys Biol 10:066007. doi: 10.1088/1478-3975/10/6/066007 PubMedCrossRefGoogle Scholar
  19. 19.
    Daub JT, Merks RMH (2013) A cell-based model of extracellular-matrix-guided endothelial cell migration during angiogenesis. B Math Biol 75:1377–1399. doi: 10.1007/s11538-013-9826-5 CrossRefGoogle Scholar
  20. 20.
    Scianna M, Munaron L, Preziosi L (2011) A multiscale hybrid approach for vasculogenesis and related potential blocking therapies. Prog Biophys Mol Biol 106:450–462. doi: 10.1016/j.pbiomolbio.2011.01.004 PubMedCrossRefGoogle Scholar
  21. 21.
    Boas SEM, Merks RMH (2014) Synergy of cell–cell repulsion and vacuolation in a computational model of lumen formation. J R Soc Interface 11:20131049. doi: 10.1038/ncb1705 PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Shirinifard A, Gens JS, Zaitlen BL, Popławski NJ, Swat M et al (2009) 3D multi-cell simulation of tumor growth and angiogenesis. PLoS One 4:e7190. doi: 10.1371/journal.pone.0007190 PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Shirinifard A, Glazier JA, Swat M, Gens JS, Family F et al (2012) Adhesion failures determine the pattern of choroidal neovascularization in the eye: a computer simulation study. PLoS Comput Biol 8:e1002440. doi: 10.1371/journal.pcbi.1002440.s022 PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Kleinstreuer N, Dix D, Rountree M, Baker N, Sipes N et al (2013) A computational model predicting disruption of blood vessel development. PLoS Comput Biol 9:e1002996. doi: 10.1371/journal.pcbi.1002996.s011 PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Bauer AL, Jackson TL, Jiang Y (2007) A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys J 92:3105–3121. doi: 10.1529/biophysj.106.101501 PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Bauer AL, Jackson TL, Jiang Y (2009) Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis. PLoS Comput Biol 5:e1000445. doi: 10.1371/journal.pcbi.1000445 PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Scianna M, Bell CG, Preziosi L (2013) A review of mathematical models for the formation of vascular networks. J Theor Biol 333:174–209. doi: 10.1016/j.jtbi.2013.04.037 PubMedCrossRefGoogle Scholar
  28. 28.
    Czirok A (2013) Endothelial cell motility, coordination and pattern formation during vasculogenesis. Wiley Interdiscip Rev Syst Biol Med 5:587–602. doi: 10.1002/wsbm.1233 PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Wacker A, Gerhardt H (2011) Endothelial development taking shape. Curr Opin Cell Biol 23:676–685PubMedGoogle Scholar
  30. 30.
    Swat MH, Thomas GL, Belmonte JM, Shirinifard A, Hmeljak D et al. (2012) Multi-scale modeling of tissues using CompuCell3D. Elsevier Inc. 42 pp. doi: 10.1016/B978-0-12-388403-9.00013-8
  31. 31.
    Szabó A, Varga K, Garay T, Hegedűs B, Czirok A (2012) Invasion from a cell aggregate – the roles of active cell motion and mechanical equilibrium. Phys Biol 9:016010. doi: 10.1088/1478-3975/9/1/016010 PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    van Oers RFM, Ruimerman R, Tanck E, Hilbers PAJ, Huiskes R (2008) A unified theory for osteonal and hemi-osteonal remodeling. Bone 42:250–259. doi: 10.1016/j.bone.2007.10.009 PubMedCrossRefGoogle Scholar
  33. 33.
    Starruß J, De Back W, Brusch L, Deutsch A (2014) Morpheus: a user-friendly modeling environment for multiscale and multicellular systems biology. Bioinformatics 30:1331–1332. doi: 10.1093/bioinformatics/btt772 PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Pitt-Francis J, Pathmanathan P, Bernabeu MO, Bordas R, Cooper J et al (2009) Chaste: a test-driven approach to software development for biological modelling. Comput Phys Commun 180:2452–2471. doi: 10.1016/j.cpc.2009.07.019 CrossRefGoogle Scholar
  35. 35.
    Merks RMH, Guravage M, Inze D, Beemster GTS (2011) VirtualLeaf: an open-source framework for cell-based modeling of plant tissue growth and development. Plant Physiol 155:656–666. doi: 10.1104/pp. 110.167619 PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Holcombe M, Adra S, Bicak M, Chin S, Coakley S et al (2012) Modelling complex biological systems using an agent-based approach. Integr Biol 4:53–64CrossRefGoogle Scholar
  37. 37.
    Glazier JA, Graner F (1993) Simulation of the differential adhesion driven rearrangement of biological cells. Phys Rev E 47:2128–2154CrossRefGoogle Scholar
  38. 38.
    Savill NJ, Hogeweg P (1997) Modelling morphogenesis: from single cells to crawling slugs. J Theor Biol 184:229–235CrossRefGoogle Scholar
  39. 39.
    Eden M (1961) A two-dimensional growth process. Proc 4th Berkeley Symp Math Statist Prob 4:223–239Google Scholar
  40. 40.
    Merks RMH, Glazier JA (2006) Dynamic mechanisms of blood vessel growth. Nonlinearity 19:C1–C10. doi: 10.1088/0951-7715/19/1/000 PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6:273–286. doi: 10.1038/nrd2115 PubMedCrossRefGoogle Scholar
  42. 42.
    Pepper MS (2001) Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol 21:1104–1117PubMedCrossRefGoogle Scholar
  43. 43.
    van Hinsbergh VWM, Koolwijk P (2008) Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead. Cardiovasc Res 78:203–212. doi: 10.1093/cvr/cvm102 PubMedCrossRefGoogle Scholar
  44. 44.
    Gerhardt H, Betsholtz C (2003) Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 314:15–23. doi: 10.1007/s00441-003-0745-x PubMedCrossRefGoogle Scholar
  45. 45.
    Gerhardt H (2008) VEGF and endothelial guidance in angiogenic sprouting. Organogenesis 4:241–246PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Senger DR, Perruzzi CA, Streit M, Koteliansky VE, de Fougerolles AR et al (2002) The and integrins provide critical support for vascular endothelial growth factor signaling, endothelial cell migration, and tumor angiogenesis. Am J Pathol 160:195–204PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Lamalice L, Le Boeuf F, Huot J (2007) Endothelial cell migration during angiogenesis. Circ Res 100:782–794. doi: 10.1161/01.RES.0000259593.07661.1e PubMedCrossRefGoogle Scholar
  48. 48.
    DiMilla PA, Stone JA, Quinn JA, Albelda SM, Lauffenburger DA (1993) Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength. J Cell Biol 122:729–737PubMedCrossRefGoogle Scholar
  49. 49.
    Cox E, Sastry S, Huttenlocher A (2001) Integrin-mediated adhesion regulates cell polarity and membrane protrusion through the Rho family of GTPases. Mol Biol Cell 12:265–277PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Coomber BL, Gotlieb AI (1990) In vitro endothelial wound repair. Interaction of cell migration and proliferation. Arteriosclerosis 10:215–222PubMedCrossRefGoogle Scholar
  51. 51.
    Keller EF, Segel LA (1971) Model for chemotaxis. J Theor Biol 30:225–234. doi: 10.1016/0022-5193(71)90050-6 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
  2. 2.Swiss Institute of BioinformaticsLausanneSwitzerland
  3. 3.Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
  4. 4.Centrum Wiskunde & InformaticaAmsterdamThe Netherlands
  5. 5.Mathematical InstituteUniversity LeidenLeidenThe Netherlands

Personalised recommendations