Advertisement

Simultaneous Detection of Nuclear and Cytoplasmic RNA Variants Utilizing Stellaris® RNA Fluorescence In Situ Hybridization in Adherent Cells

  • Sally R. Coassin
  • Arturo V. OrjaloJr.
  • Sheila J. Semaan
  • Hans E. Johansson
Part of the Methods in Molecular Biology book series (MIMB, volume 1211)

Abstract

RNA fluorescence in situ hybridization (FISH) has long been an indispensable tool for the detection and localization of RNA and is increasingly becoming an important complement to other gene expression analysis methods. We detail a streamlined RNA FISH protocol for the simultaneous imaging of multiple RNA gene products and RNA variants in fixed mammalian cells. The technique utilizes fluorescently pre-labeled, short DNA oligonucleotides (20 nucleotides in length), pooled into sets of up to 48 individual probes. The overall binding of multiple oligonucleotides to the same RNA target results in punctate fluorescent signals representing individual RNA molecules without the need for enzymatic signal amplification. Visualization of these punctate signals, through the use of wide-field fluorescence microscopy, enables the quantification of single RNA transcripts. Additionally, by utilizing probe sets with spectrally distinct fluorophores, multiplex analysis of specific RNAs, or RNA variants, can be achieved. We focus on the detection of a cytoplasmic mRNA and a nuclear long noncoding RNA to illustrate the benefits of this method for cell-specific detection and subcellular localization. Post-processing of images and spot counting is briefly discussed to demonstrate the capabilities of this method for the statistical analysis of RNA molecule number per cell, which is information that can be utilized to determine overall gene expression levels and cell-to-cell gene expression variation.

Key words

Exon Intron Fluorescence In situ hybridization FISH Single molecule detection lncRNA mRNA Gene expression 

Notes

Acknowledgements

We gratefully acknowledge the continual support of Dr. Ron Cook and members of the Stellaris team at Biosearch Technologies, Inc. This chapter is dedicated to Dr. Jerry L. Ruth, a pioneer in the creation of probes for in situ hybridization.

Disclaimers

For research use only. Not for use in diagnostic procedures. Stellaris® is a trademark of Biosearch Technologies, Inc. Products and technologies appearing in this application note may have trademark or patent restrictions associated with them. Please see http://www.biosearchtech.com/legal for a full legal disclosure.

References

  1. 1.
    ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74. doi: 10.1038/nature11247 CrossRefGoogle Scholar
  2. 2.
    Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166. doi: 10.1146/annurev-biochem-051410-092902 PubMedCrossRefGoogle Scholar
  3. 3.
    Clark MB, Choudhary A, Smith MA et al (2013) The dark matter rises: the expanding world of regulatory RNAs. Essays Biochem 54:1–16. doi: 10.1042/bse0540001 PubMedCrossRefGoogle Scholar
  4. 4.
    Femino AM, Fay FS, Fogarty K et al (1998) Visualization of single RNA transcripts in situ. Science 280:585–590. doi: 10.1126/science. 280.5363.585 PubMedCrossRefGoogle Scholar
  5. 5.
    Raj A, van den Bogaard P, Rifkin SA et al (2008) Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods 5:877–879. doi: 10.1038/nmeth.1253 PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Raj A, Peskin CS, Tranchina D et al (2006) Stochastic mRNA synthesis in mammalian cells. PLoS Biol 4:e309. doi: 10.1371/journal.pbio.0040309 PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Raj A, Rifkin SA, Andersen E et al (2010) Variability in gene expression underlies incomplete penetrance. Nature 463:913–918. doi:  10.1038/nature08781 PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Batish M, Raj A, Tyagi S (2011) Single molecule imaging of RNA in situ. Methods Mol Biol 714:3–13. doi: 10.1007/978-1-61779-005-8_1 PubMedCrossRefGoogle Scholar
  9. 9.
    Orjalo AV Jr, Johansson HE, Ruth JR (2011) Stellaris™ fluorescence in situ hybridization (FISH) probes: a powerful tool for mRNA detection. Nat Methods 8:I–III. doi: 10.1038/nmeth.f.349 Google Scholar
  10. 10.
    Levesque MJ, Ginart P, Wei Y et al (2013) Visualizing SNVs to quantify allele-specific expression in single cells. Nat Methods 10: 865–867. doi: 10.1038/nmeth.2589 PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Shaffer SM, Wu MT, Levesque MJ et al (2013) Turbo FISH: a method for rapid single molecule RNA FISH. PLoS One 8:e75120. doi:  10.1371/journal.pone.0075120 PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Yildiz A, Forkey JN, McKinney SA et al (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300:2061–2065. doi: 10.1126/science. 1084398 PubMedCrossRefGoogle Scholar
  13. 13.
    Hattinger CM, Jochemsen AG, Tanke HJ et al (2002) Induction of p21 mRNA synthesis after short-wavelength UV light visualized in individual cells by RNA FISH. J Histochem Cytochem 50: 81–89. doi: 10.1177/002215540205000109 PubMedCrossRefGoogle Scholar
  14. 14.
    Wiles JE, Freer SM, Spector DL (2008) 3′ End processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell 135:919–932. doi: 10.1016/j.cell.2008.10.012 CrossRefGoogle Scholar
  15. 15.
    Davis JM (ed) (2002) Basic cell culture. Oxford University Press, New YorkGoogle Scholar
  16. 16.
    Rifkin SA (2011) Identifying fluorescently labeled single molecules in image stacks using machine learning. Methods Mol Biol 772:329–348. doi: 10.1007/978-1-61779-228-1_20 PubMedCrossRefGoogle Scholar
  17. 17.
    Allalou A, Wählby C (2009) BlobFinder, a tool for fluorescence microscopy image cytometry. Comput Meth Programs Biomed 94:58–65. doi: 10.1016/j.cmpb.2008.08.006 CrossRefGoogle Scholar
  18. 18.
    Mueller F, Senecal A, Tantale K et al (2013) FISH-quant: automatic counting of transcripts in 3D FISH images. Nat Methods 10:277–278. doi: 10.1038/nmeth.2406 PubMedCrossRefGoogle Scholar
  19. 19.
    Lyubimova A, Itzkovitz S, Junker JP et al (2013) Nat Protoc 8:1743–1758. doi: 10.1038/nprot.2013.109 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Sally R. Coassin
    • 1
  • Arturo V. OrjaloJr.
    • 1
  • Sheila J. Semaan
    • 1
  • Hans E. Johansson
    • 1
  1. 1.Biosearch Technologies, Inc.2199 S. McDowell BlvdPetalumaUSA

Personalised recommendations