Exploring Mesenchymal Stem Cell-Derived Extracellular Vesicles in Acute Kidney Injury

  • Stefania Bruno
  • Giovanni Camussi
Part of the Methods in Molecular Biology book series (MIMB, volume 1213)


Several experimental animal models have been set up to study the characteristics of acute kidney injury (AKI) and to develop possible new treatments for clinical applications. Herein, we review the experimental procedures used to induce AKI to test the therapeutic potential of extracellular vesicles (EV) produced by stem cells. In particular, we focused on AKI models induced by rhabdomyolysis, by cisplatin treatment, and by renal ischemia–reperfusion injury.

Key words

Glycerol Cisplatin Ischemia–reperfusion injury Mouse model Kidney injury Renal regeneration 


  1. 1.
    Camussi G, Deregibus MC, Bruno S et al (2010) Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 789:838–848CrossRefGoogle Scholar
  2. 2.
    Bruno S, Grange C, Deregibus MC et al (2009) Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol 20:1053–1067PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Bruno S, Grange C, Collino F et al (2012) Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury. PLoS One 7:e33115PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Gatti S, Bruno S, Deregibus MC et al (2011) Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol Dial Transplant 26:1474–1483PubMedCrossRefGoogle Scholar
  5. 5.
    He J, Wang Y, Sun S et al (2012) Bone marrow stem cells-derived microvesicles protect against renal injury in the mouse remnant kidney model. Nephrology (Carlton) 17:493–500CrossRefGoogle Scholar
  6. 6.
    Thiel G, Wilson DR, Arce ML et al (1967) Glycerol induced hemoglobinuric acute renal failure in the rat. Nephron 4:276–297PubMedCrossRefGoogle Scholar
  7. 7.
    Karam H, Bruneval P, Cloze JP et al (1995) Role of endothelin in ARF due to rhabdomyolysis in rats. J Pharmacol Exp Ther 274: 481–486PubMedGoogle Scholar
  8. 8.
    Curry SC, Chang D, Connor D (2002) Drug-and toxin-induced rhabdomyolysis. Ann Emerg Med 18:1068–1084CrossRefGoogle Scholar
  9. 9.
    Dai RP, Dheen ST, Tay SS (2002) Induction of cytokine expression in rat post-ischemic sinoatrial node (SAN). Cell Tissue Res 310:59–66PubMedCrossRefGoogle Scholar
  10. 10.
    Zager RA, Burkhart KM, Conrad DS et al (1995) Iron, heme oxygenase, and glutathione: effects on myohemoglobinuric proximal tubular injury. Kidney Int 48:1624–1634PubMedCrossRefGoogle Scholar
  11. 11.
    Herrera MB, Bussolati B, Bruno S et al (2004) Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury. Int J Mol Med 14:1035–1041PubMedGoogle Scholar
  12. 12.
    Herrera MB, Bussolati B, Bruno S et al (2007) Exogenous mesenchymal stem cells localize to the kidney by means of CD44 following acute tubular injury. Kidney Int 72:430–441PubMedCrossRefGoogle Scholar
  13. 13.
    dos Santos NA, Carvalho Rodrigues MA, Martins NM et al (2012) Cisplatin-induced nephrotoxicity and targets of nephroprotection: an update. Arch Toxicol 86:1233–1250PubMedCrossRefGoogle Scholar
  14. 14.
    Fillastre JP, Raguenez-Viotte G (1989) Cisplatin nephrotoxicity. Toxicol Lett 46:163–175PubMedCrossRefGoogle Scholar
  15. 15.
    Bi B, Schmitt R, Israilova M et al (2007) Stromal cells protect against acute tubular injury via an endocrine effect. J Am Soc Nephrol 18:2486–2496PubMedCrossRefGoogle Scholar
  16. 16.
    Morigi M, Introna M, Imberti B et al (2008) Human bone marrow mesenchymal stem cells accelerate recovery of acute renal injury and prolong survival in mice. Stem Cells 26:2075–2082PubMedCrossRefGoogle Scholar
  17. 17.
    Lieberthal W, Levine JS (1996) Mechanisms of apoptosis and its potential role in renal tubular epithelial cell injury. Am J Physiol 271: F477–F488PubMedGoogle Scholar
  18. 18.
    Mohaupt M, Kramer HJ (1989) Acute ischemic renal failure: review of experimental studies on pathophysiology and potential protective interventions. Ren Fail 11:177–185PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Molecular Biotechnology and Healthy Science, Molecular Biotechnology CenterUniversity of TorinoTorinoItaly
  2. 2.Department of Medical Sciences; Department of Molecular Biotechnology and Healthy ScienceUniversity of TorinoTorinoItaly

Personalised recommendations