Advertisement

Assessment of Functional Competence of Endothelial Cells from Human Pluripotent Stem Cells in Zebrafish Embryos

  • Valeria V. Orlova
  • Yvette Drabsch
  • Peter ten Dijke
  • Christine L. Mummery
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1213)

Abstract

Human pluripotent stem cells (hPSCs) are proving to be a valuable source of endothelial cells (ECs), pericytes, and vascular smooth muscle cells (vSMCs). Although an increasing number of phenotypic markers are becoming available to determine the phenotypes of these cells in vitro, the ability to integrate and form functional vessels in the host organism, typically mouse, remains critical for the assessment of EC functional competence. However, current mouse models require relatively large numbers of cells that might be difficult to derive simultaneously from multiple hPSCs lines. Therefore, there is an urgent need for new functional assays that are robust and can be performed with small numbers of cells. Here we describe a novel zebrafish xenograft model to test functionality of hPSC-derived ECs. The assay can be performed in 10 days and requires only ~100–400 human cells per embryo. Thus, the zebrafish xenograft model can be useful for the accurate and rapid assessment of functionality of hPSC-derived ECs in a lower vertebrate model that is widely viewed by regulatory authorities as a more acceptable alternative to adult mice.

Key words

Human pluripotent stem cells (hPSCs) Endothelial cells (ECs) Zebrafish xenograft 

Notes

Acknowledgments

The authors would like to thank Francijna E. van den Hil for technical assistance.

We are grateful for financial support from LUMC (Gisela Thier Fellowship, V.V.O); the Netherlands Institute of Regenerative Medicine and the Netherlands Heart Foundation (2008B106) (C.LM.); Cancer Genomics Centre and LeDucq Foundation (P.D.).

References

  1. 1.
    Santoriello C, Zon LI (2012) Hooked! Modeling human disease in zebrafish. J Clin Invest 122:2337–2343. doi: 10.1172/JCI60434 PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Lawson ND, Wolfe SA (2011) Perspective. Dev Cell 21:48–64. doi: 10.1016/j.devcel.2011.06.007 PubMedCrossRefGoogle Scholar
  3. 3.
    Stoletov K, Klemke R (2008) Catch of the day: zebrafish as a human cancer model. Oncogene 27:4509–4520. doi: 10.1038/onc.2008.95 PubMedCrossRefGoogle Scholar
  4. 4.
    Zon LI, Peterson RT (2005) In vivo drug discovery in the zebrafish. Nat Rev Drug Discov 4:35–44. doi: 10.1038/nrd1606 PubMedCrossRefGoogle Scholar
  5. 5.
    Gore AV, Monzo K, Cha YR et al (2012) Vascular development in the zebrafish. Cold Spring Harb Perspect Med 2:a006684–a006684. doi: 10.1101/cshperspect.a006684 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Nicoli S, Ribatti D, Cotelli F, Presta M (2007) Mammalian tumor xenografts induce neovascularization in zebrafish embryos. Cancer Res 67:2927–2931. doi: 10.1158/0008-5472.CAN-06-4268 PubMedCrossRefGoogle Scholar
  7. 7.
    Traver D, Herbomel P, Patton EE et al (2003) The Zebrafish as a model organism to study development of the immune system. Adv Immunol 81:254–330CrossRefGoogle Scholar
  8. 8.
    Orlova VV, Drabsch Y, Freund C et al (2013) Functionality of endothelial cells and pericytes from human pluripotent stem cells demonstrated in cultured vascular plexus and zebrafish xenografts. Arterioscler Thromb Vasc Biol 34:177–186. doi: 10.1161/ATVBAHA.113.302598 PubMedCrossRefGoogle Scholar
  9. 9.
    Drabsch Y, He S, Zhang L et al (2013) Transforming growth factor-β signalling controls human breast cancer metastasis in a zebrafish xenograft model. Breast Cancer Res 15:1–1. doi: 10.1186/bcr3573 CrossRefGoogle Scholar
  10. 10.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147PubMedCrossRefGoogle Scholar
  11. 11.
    Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920. doi: 10.1126/science.1151526 PubMedCrossRefGoogle Scholar
  12. 12.
    Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. doi: 10.1016/j.cell.2007.11.019 PubMedCrossRefGoogle Scholar
  13. 13.
    Kusuma S, Shen Y-I, Hanjaya-Putra D et al (2013) Self-organized vascular networks from human pluripotent stem cells in a synthetic matrix. Proc Natl Acad Sci. doi: 10.1073/pnas.1306562110 PubMedCentralPubMedGoogle Scholar
  14. 14.
    Cheung C, Bernardo AS, Trotter MWB et al (2012) Generation of human vascular smooth muscle subtypes provides insight into embryological origin–dependent disease susceptibility. Nat Biotechnol 30:165–173. doi: 10.1038/nbt.2107 PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    White MP, Rufaihah AJ, Liu L et al (2012) Limited Gene Expression Variation in Human Embryonic Stem Cell and Induced Pluripotent Stem Cell-Derived Endothelial Cells. Stem Cells 31:92–103. doi: 10.1002/stem.1267 CrossRefGoogle Scholar
  16. 16.
    Pozzoli O, Vella P, Iaffaldano G et al (2011) Endothelial Fate and Angiogenic Properties of Human CD34+ Progenitor Cells in Zebrafish. Arterioscler Thromb Vasc Biol 31:1589–1597. doi: 10.1161/ATVBAHA.111.226969 PubMedCrossRefGoogle Scholar
  17. 17.
    Ng ES, Davis R, Stanley EG, Elefanty AG (2008) A protocol describing the use of a recombinant protein-based, animal product-free medium (APEL) for human embryonic stem cell differentiation as spin embryoid bodies. Nat Protoc 3:768–776. doi: 10.1038/nprot.2008.42 PubMedCrossRefGoogle Scholar
  18. 18.
    Lawson ND, Weinstein BM (2002) In Vivo Imaging of Embryonic Vascular Development Using Transgenic Zebrafish. Dev Biol 248:307–318. doi: 10.1006/dbio.2002.0711 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Valeria V. Orlova
    • 1
  • Yvette Drabsch
    • 2
  • Peter ten Dijke
    • 2
  • Christine L. Mummery
    • 1
  1. 1.Department of Anatomy and EmbryologyLeiden University Medical CenterLeidenThe Netherlands
  2. 2.Department of Molecular Cell Biology, Cancer Genomics CentreLeiden University Medical CenterLeidenThe Netherlands

Personalised recommendations