Advertisement

Automatic Flow Injection Analysis (FIA) Determination of Total Reducing Capacity in Serum and Urine Samples

  • Marcela A. SegundoEmail author
  • Ildikó V. Tóth
  • Luís M. Magalhães
  • Salette Reis
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1208)

Abstract

Automation of total antioxidant capacity assessment can substantially increase the determination throughput, allowing large scale studies and screening experiments. Total reducing capacity evaluation can be implemented under different chemistries, including the CUPRAC—Cupric Ion Reducing Antioxidant Capacity —assay. This assay is based on reduction of Cu(II)-neocuproine complex to highly colored Cu(I)-neocuproine complex by reducing (antioxidant) components of biological samples. In this chapter, we propose an automatic flow injection method for evaluation of total reducing capacity in serum and urine samples, attaining end-point data within 4 min using a kinetic matching strategy.

Key words

Total reducing capacity CUPRAC assay Flow injection analysis Biological samples Automation 

Notes

Acknowledgements

L.M. Magalhães and I.V. Tóth thank FSE (Fundo Social Europeu) and MCTES (Ministério da Ciência, Tecnologia e Ensino Superior) for the financial support through the POPH-QREN program. The authors also acknowledge to the Fundação para a Ciência e a Tecnologia for the financial support through Strategic Project PEst-C/EQB/LA0006/2013.

References

  1. 1.
    Ruzicka J, Hansen EH (1975) Flow injection analyses. 1. New concept of fast continuous-flow analysis. Anal Chim Acta 78(1):145–157CrossRefGoogle Scholar
  2. 2.
    Magalhães LM, Santos M, Segundo MA, Reis S, Lima JLFC (2009) Flow injection based methods for fast screening of antioxidant capacity. Talanta 77(5):1559–1566PubMedCrossRefGoogle Scholar
  3. 3.
    Bukman L, Martins AC, Barizao EO, Visentainer JV, Almeida VD (2013) DPPH assay adapted to the FIA system for the determination of the antioxidant capacity of wines: optimization of the conditions using the response surface methodology. Food Anal Methods 6(5):1424–1432CrossRefGoogle Scholar
  4. 4.
    Pellegrini N, Del Rio D, Colombi B, Bianchi M, Brighenti F (2003) Application of the 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation assay to a flow injection system for the evaluation of antioxidant activity of some pure compounds and beverages. J Agric Food Chem 51(1):260–264PubMedCrossRefGoogle Scholar
  5. 5.
    Chen J, Gorton L, Akesson B (2002) Electrochemical studies on antioxidants in bovine milk. Anal Chim Acta 474(1–2):137–146CrossRefGoogle Scholar
  6. 6.
    Mannino S, Brenna O, Buratti S, Cosio MS (1998) A new method for the evaluation of the ‘antioxidant power’ of wines. Electroanalysis 10(13):908–912CrossRefGoogle Scholar
  7. 7.
    Shpigun LK, Arharova MA, Brainina KZ, Ivanova AV (2006) Flow injection potentiometric determination of total antioxidant activity of plant extracts. Anal Chim Acta 573:419–426PubMedCrossRefGoogle Scholar
  8. 8.
    Ribeiro JPN, Magalhães LM, Reis S, Lima JLFC, Segundo MA (2011) High-throughput total cupric ion reducing antioxidant capacity of biological samples determined using flow injection analysis and microplate-based methods. Anal Sci 27(5):483–488PubMedCrossRefGoogle Scholar
  9. 9.
    Apak R, Guclu K, Ozyurek M, Karademir SE (2004) Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem 52(26):7970–7981PubMedCrossRefGoogle Scholar
  10. 10.
    Apak R, Guclu K, Ozyurek M, Karademir SE, Altun M (2005) Total antioxidant capacity assay of human serum using copper(II)-neocuproine as chromogenic oxidant: the CUPRAC method. Free Radic Res 39(9):949–961PubMedCrossRefGoogle Scholar
  11. 11.
    Bener M, Ozyurek M, Guclu K, Apak R (2010) Development of a low-cost optical sensor for cupric reducing antioxidant capacity measurement of food extracts. Anal Chem 82(10):4252–4258PubMedCrossRefGoogle Scholar
  12. 12.
    Alpinar K, Ozyurek M, Kolak U, Guclu K, Aras Q, Altun M, Celik SE, Berker KIJ, Bektasoglu B, Apak R (2009) Antioxidant capacities of some food plants wildly grown in Ayvalik of Turkey. Food Sci Technol Res 15(1):59–64CrossRefGoogle Scholar
  13. 13.
    Magalhães LM, Segundo MA, Reis S, Lima JLFC (2006) Automatic method for determination of total antioxidant capacity using 2,2-diphenyl-1-picrylhydrazyl assay. Anal Chim Acta 558(1–2):310–318CrossRefGoogle Scholar
  14. 14.
    Walker RB, Everette JD (2009) Comparative reaction rates of various antioxidants with ABTS radical cation. J Agric Food Chem 57(4):1156–1161PubMedCrossRefGoogle Scholar
  15. 15.
    Magalhães LM, Barreiros L, Maia MA, Reis S, Segundo MA (2012) Rapid assessment of endpoint antioxidant capacity of red wines through microchemical methods using a kinetic matching approach. Talanta 97:473–483PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Marcela A. Segundo
    • 1
    Email author
  • Ildikó V. Tóth
    • 1
  • Luís M. Magalhães
    • 1
  • Salette Reis
    • 1
  1. 1.REQUIMTE, Department of Chemical Sciences, Faculty of PharmacyUniversity of PortoPortoPortugal

Personalised recommendations