Advertisement

RNA Fluorescence In Situ Hybridization in Cultured Mammalian Cells

  • Vidisha Tripathi
  • Jingyi Fei
  • Taekjip Ha
  • Kannanganattu V. Prasanth
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1206)

Abstract

It is now clear that long noncoding RNAs (lncRNAs) regulate a number of aspects of nuclear organization and gene expression. An important tool for the study of the distribution and function of lncRNAs is RNA fluorescence in situ hybridization (RNA-FISH). The protocols presented in this chapter describe this method in detail and also mention a number of critical points that must be considered when performing this technique.

Key words

Long noncoding RNA lncRNA In situ hybridization RNA-FISH Fluorescence 

Notes

Acknowledgments

Research in the KVP lab is supported by grants from NIH/NIGMS (GM088252) and American Cancer Society (RSG-11-174-01-RMC). TH is an HHMI investigator.

References

  1. 1.
    Femino AM et al (1998) Visualization of single RNA transcripts in situ. Science 280:585–590PubMedCrossRefGoogle Scholar
  2. 2.
    Narimatsu R, Patterson BK (2005) High-throughput cervical cancer screening using intracellular human papillomavirus E6 and E7 mRNA quantification by flow cytometry. Am J Clin Pathol 123:716–723PubMedCrossRefGoogle Scholar
  3. 3.
    Popescu NC et al (1993) A Burkitt lymphoma cell line with integrated Epstein-Barr virus at a stable chromosome modification site. Virology 195:248–251PubMedCrossRefGoogle Scholar
  4. 4.
    Fan Y et al (2001) Determination of transgenic loci by expression FISH. Genomics 71:66–69PubMedCrossRefGoogle Scholar
  5. 5.
    Bridger JM et al (2005) Nuclear RNAs confined to a reticular compartment between chromosome territories. Exp Cell Res 302:180–193PubMedCrossRefGoogle Scholar
  6. 6.
    Clemson CM et al (1996) XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J Cell Biol 132:259–275PubMedCrossRefGoogle Scholar
  7. 7.
    Dirks RW, Raap AK (1995) Cell-cycle-dependent gene expression studied by two-colour fluorescent detection of a mRNA and histone mRNA. Histochem Cell Biol 104:391–395PubMedCrossRefGoogle Scholar
  8. 8.
    Gribnau J et al (2000) Intergenic transcription and developmental remodeling of chromatin subdomains in the human beta-globin locus. Mol Cell 5:377–386PubMedCrossRefGoogle Scholar
  9. 9.
    Hutchinson JN et al (2007) A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics 8:39PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Lampel S et al (1997) Nuclear RNA accumulations contain released transcripts and exhibit specific distributions with respect to Sm antigen foci. DNA Cell Biol 16:1133–1142PubMedCrossRefGoogle Scholar
  11. 11.
    Lawrence JB, Singer RH, Marselle LM (1989) Highly localized tracks of specific transcripts within interphase nuclei visualized by in situ hybridization. Cell 57:493–502PubMedCrossRefGoogle Scholar
  12. 12.
    Miles J et al (2007) Intergenic transcription, cell-cycle and the developmentally regulated epigenetic profile of the human beta-globin locus. PLoS One 2:e630PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    van de Corput MP, Grosveld FG (2001) Fluorescence in situ hybridization analysis of transcript dynamics in cells. Methods 25:111–118PubMedCrossRefGoogle Scholar
  14. 14.
    Zirbel RM et al (1993) Evidence for a nuclear compartment of transcription and splicing located at chromosome domain boundaries. Chromosome Res 1:93–106PubMedCrossRefGoogle Scholar
  15. 15.
    Braidotti G (2001) RNA-FISH to analyze allele-specific expression. Methods Mol Biol 181:169–180PubMedGoogle Scholar
  16. 16.
    Herzing LB, Cook EH Jr, Ledbetter DH (2002) Allele-specific expression analysis by RNA-FISH demonstrates preferential maternal expression of UBE3A and imprint maintenance within 15q11–q13 duplications. Hum Mol Genet 11:1707–1718PubMedCrossRefGoogle Scholar
  17. 17.
    Levsky JM et al (2002) Single-cell gene expression profiling. Science 297:836–840PubMedCrossRefGoogle Scholar
  18. 18.
    Dirks RW, Daniel KC, Raap AK (1995) RNAs radiate from gene to cytoplasm as revealed by fluorescence in situ hybridization. J Cell Sci 108:2565–2572PubMedGoogle Scholar
  19. 19.
    Huang S, Spector DL (1996) Intron-dependent recruitment of pre-mRNA splicing factors to sites of transcription. J Cell Biol 133:719–732PubMedCrossRefGoogle Scholar
  20. 20.
    Xing Y et al (1993) Higher level organization of individual gene transcription and RNA splicing. Science 259:1326–1330PubMedCrossRefGoogle Scholar
  21. 21.
    Raj A, Tyagi S (2010) Detection of individual endogenous RNA transcripts in situ using multiple singly labeled probes. Methods Enzymol 472:365–386PubMedCrossRefGoogle Scholar
  22. 22.
    Raj A et al (2008) Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods 5:877–879PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Raj A et al (2010) Variability in gene expression underlies incomplete penetrance. Nature 463:913–918PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    So LH et al (2011) General properties of transcriptional time series in Escherichia coli. Nat Genet 43:554–560PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Trcek T et al (2011) Single-molecule mRNA decay measurements reveal promoter-regulated mRNA stability in yeast. Cell 147:1484–1497PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Vargas DY et al (2011) Single-molecule imaging of transcriptionally coupled and uncoupled splicing. Cell 147:1054–1065PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Zenklusen D, Larson DR, Singer RH (2008) Single-RNA counting reveals alternative modes of gene expression in yeast. Nat Struct Mol Biol 15:1263–1271PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Tripathi V et al (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39:925–938PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Vidisha Tripathi
    • 1
  • Jingyi Fei
    • 2
  • Taekjip Ha
    • 3
  • Kannanganattu V. Prasanth
    • 1
  1. 1.Department of Cell and Developmental BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of Physics, Center of the Physics of Living CellsUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Center for the Physics of Living Cells, Department of Physics, Center for Biophysics and Computational Biology, Institute for Genomic BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations