Advertisement

Nanostructure Imaging Mass Spectrometry: The Role of Fluorocarbons in Metabolite Analysis and Yoctomole Level Sensitivity

  • Michael E. Kurczy
  • Trent R. Northen
  • Sunia A. Trauger
  • Gary Siuzdak
Part of the Methods in Molecular Biology book series (MIMB, volume 1203)

Abstract

Nanostructure imaging mass spectrometry (NIMS) has become an effective technology for generating ions in the gas phase, providing high sensitivity and imaging capabilities for small molecules, metabolites, drugs, and drug metabolites. Specifically, laser desorption from the nanostructure surfaces results in efficient energy transfer, low background chemical noise, and the nondestructive release of analyte ions into the gas phase. The modification of nanostructured surfaces with fluorous compounds, either covalent or non-covalent, has played an important role in gaining high efficiency/sensitivity by facilitating analyte desorption from the nonadhesive surfaces, and minimizing the amount of laser energy required. In addition, the hydrophobic fluorinated nanostructure surfaces have aided in concentrating deposited samples into fine micrometer-sized spots, a feature that further facilitates efficient desorption/ionization. These fluorous nanostructured surfaces have opened up NIMS to very broad applications including enzyme activity assays and imaging, providing low background, efficient energy transfer, nondestructive analyte ion generation, super-hydrophobic surfaces, and ultra-high detection sensitivity.

Key words

Nanostructure imaging mass spectrometry (NIMS) Desorption/ionization on silicon mass spectrometry (DIOS-MS) Metabolites Mass spectrometry imaging 

Notes

Acknowledgments

This work conducted by ENIGMA-Ecosystems and Networks Integrated with Genes and Molecular Assemblies was supported by the Office of Science, Office of Biological and Environmental Research, of the US Department of Energy under Contract No. DE-AC02-05CH11231. This work was also supported by the California Institute of Regenerative Medicine Grant TR1-01219 and the National Institutes of Health grants R24 EY017540-04, P30 MH062261-10, and P01 DA026146-02. Financial support was also received from the Department of Energy grants FG02-07ER64325 and DE-AC0205CH11231.

References

  1. 1.
    Thomson JJ (1910) Rays of positive electricity. Phil Mag 20:752–767CrossRefGoogle Scholar
  2. 2.
    Karas M, Bachmann D, Bahr U, Hillenkamp F (1987) Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int J Mass Spectrom Ion Process 78:53–68CrossRefGoogle Scholar
  3. 3.
    Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60:2299–2301PubMedCrossRefGoogle Scholar
  4. 4.
    Wei J, Buriak JM, Siuzdak G (1999) Desorption-ionization mass spectrometry on porous silicon. Nature 399:243–246PubMedCrossRefGoogle Scholar
  5. 5.
    Trauger SA, Go EP, Shen ZX, Apon JV, Compton BJ, Bouvier ESP, Finn MG, Siuzdak G (2004) High sensitivity and analyte capture with desorption/ionization mass spectrometry on silylated porous silicon. Anal Chem 76:4484–4489PubMedCrossRefGoogle Scholar
  6. 6.
    Nordstrom A, Apon JV, Uritboonthal W, Go EP, Siuzdak G (2006) Surfactant-enhanced desorption/ionization on silicon mass spectrometry. Anal Chem 78:272–278PubMedCrossRefGoogle Scholar
  7. 7.
    Northen TR, Yanes O, Northen MT, Marrinucci D, Uritboonthai W, Apon J, Golledge SL, Nordstrom A, Siuzdak G (2007) Clathrate nanostructures for mass spectrometry. Nature 449:1033–1036PubMedCrossRefGoogle Scholar
  8. 8.
    Yanes O, Woo HK, Northen TR, Oppenheimer SR, Shriver L, Apon J, Estrada MN, Potchoiba MJ, Steenwyk R, Manchester M, Siuzdak G (2009) Nanostructure initiator mass spectrometry: tissue imaging and direct biofluid analysis. Anal Chem 81:2969–2975PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Patti GJ, Woo HK, Yanes O, Shriver L, Thomas D, Uritboonthai W, Apon JV, Steenwyk R, Manchester M, Siuzdak G (2010) Detection of carbohydrates and steroids by cation-enhanced nanostructure-initiator mass spectrometry (NIMS) for biofluid analysis and tissue imaging. Anal Chem 82:121–128PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Greving MP, Patti GJ, Siuzdak G (2011) Nanostructure-initiator mass spectrometry metabolite analysis and imaging. Anal Chem 83:2–7PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Kruse RA, Li X, Bohn PW, Sweedler JV (2001) Experimental factors controlling analyte ion generation in laser desorption/ionization mass spectrometry on porous silicon. Anal Chem 73:3639–3645PubMedCrossRefGoogle Scholar
  12. 12.
    Northen T, Woo H-K, Northen M, Nordström A, Uritboonthail W, Turner K, Siuzdak G (2007) High surface area of porous silicon drives desorption of intact molecules. J Am Soc Mass Spectrom 18:1945–1949PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Peterson DS (2007) Matrix-free methods for laser desorption/ionization mass spectrometry. Mass Spectrom Rev 26:19–34PubMedCrossRefGoogle Scholar
  14. 14.
    Stolee JA, Walker BN, Zorba V, Russo RE, Vertes A (2012) Laser-nanostructure interactions for ion production. Phys Chem Chem Phys 14:8453–8471CrossRefGoogle Scholar
  15. 15.
    Go EP, Apon JV, Luo GH, Saghatelian A, Daniels RH, Sahi V, Dubrow R, Cravatt BF, Vertes A, Siuzdak G (2005) Desorption/ionization on silicon nanowires. Anal Chem 77:1641–1646PubMedCrossRefGoogle Scholar
  16. 16.
    Walker BN, Stolee JA, Pickel DL, Retterer ST, Vertes A (2010) Tailored silicon nanopost arrays for resonant nanophotonic ion production. J Phys Chem C 114:4835–4840CrossRefGoogle Scholar
  17. 17.
    Chen Y, Vertes A (2006) Adjustable fragmentation in laser desorption/ionization from laser-induced silicon microcolumn arrays. Anal Chem 78:5835–5844PubMedCrossRefGoogle Scholar
  18. 18.
    Two different individuals (S. Trauger and J. Apon) performed the experiments independently.Google Scholar
  19. 19.
    Two different individuals (W. Uritboonthai and O. Yanes) performed the experiments independently.Google Scholar
  20. 20.
    Keller BO, Li L (2001) Detection of 25,000 molecules of substance P by MALDI-TOF mass spectrometry and investigations into the fundamental limits of detection in MALDI. J Am Soc Mass Spectrom 12:1055–1063CrossRefGoogle Scholar
  21. 21.
    Walker BN, Stolee JA, Vertes A (2012) Nanophotonic ionization for ultratrace and single-cell analysis by mass spectrometry. Anal Chem 84:7756–7762PubMedCrossRefGoogle Scholar
  22. 22.
    Aerni H-R, Cornett DS, Caprioli RM (2005) Automated acoustic matrix deposition for MALDI sample preparation. Anal Chem 78:827–834CrossRefGoogle Scholar
  23. 23.
    Trouillon R, Passarelli MK, Wang J, Kurczy ME, Ewing AG (2012) Chemical analysis of single cells. Anal Chem 85:522–542PubMedCrossRefGoogle Scholar
  24. 24.
    O’Brien PJ, Lee M, Spilker ME, Zhang C, Yan Z, Nicholls TC, Li W, Johnson CH, Patti GJ, Siuzdak G (2013) Monitoring metabolic responses to chemotherapy in single cells and tumors using nanostructure-initiator mass spectrometry (NIMS) imaging. Cancer Metab 1:4PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Michael E. Kurczy
    • 1
  • Trent R. Northen
    • 2
  • Sunia A. Trauger
    • 3
  • Gary Siuzdak
    • 1
  1. 1.Center for Metabolomics and Mass SpectrometryThe Scripps Research InstituteLa JollaUSA
  2. 2.Life Sciences DivisionBerkeley LabBerkeleyUSA
  3. 3.Center for Systems BiologyHarvard UniversityCambridgeUSA

Personalised recommendations