Advertisement

Lectins pp 579-606 | Cite as

Lectin Structures: Classification Based on the 3-D Structures

  • Zui FujimotoEmail author
  • Hiroaki Tateno
  • Jun Hirabayashi
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1200)

Abstract

Recent progress in structural biology has elucidated the three-dimensional structures and carbohydrate-binding mechanisms of most lectin families. Lectins are classified into 48 families based on their three-dimensional structures. A ribbon drawing gallery of the crystal and solution structures of representative lectins or lectin-like proteins is appended and may help to convey the diversity of lectin families, the similarity and differences between lectin families, as well as the carbohydrate-binding architectures of lectins.

Key words

Carbohydrate-binding Crystal structure Protein Data Bank Protein family Protein fold Solution structure 

References

  1. 1.
    Finn RD, Mistry J, Tate J et al (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Hunter S, Jones P, Mitchell A et al (2012) InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 40:D306–D312PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Lee JK, Baum LG, Moremen K, Pierce M (2004) The X-lectins: a new family with homology to the Xenopus laevis oocyte lectin XL-35. Glycoconj J 21:443–450PubMedCrossRefGoogle Scholar
  4. 4.
    Koharudin LM, Gronenborn AM (2011) Structural basis of the anti-HIV activity of the cyanobacterial Oscillatoria Agardhii agglutinin. Structure 19:1170–1181PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Koharudin LM, Kollipara S, Aiken C, Gronenborn AM (2012) Structural insights into the anti-HIV activity of the Oscillatoria agardhii agglutinin homolog lectin family. J Biol Chem 287:33796–33811PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Moustafa I, Connaris H, Taylor M et al (2004) Sialic acid recognition by Vibrio cholerae neuraminidase. J Biol Chem 279:40819–40826PubMedCrossRefGoogle Scholar
  7. 7.
    Lee JO, Rieu P, Arnaout MA, Liddington R (1995) Crystal structure of the A domain from the α subunit of integrin CR3 (CD11b/CD18). Cell 80:631–638PubMedCrossRefGoogle Scholar
  8. 8.
    Paaventhan P, Joseph JS, Seow SV et al (2003) A 1.7A structure of Fve, a member of the new fungal immunomodulatory protein family. J Mol Biol 332:461–470PubMedCrossRefGoogle Scholar
  9. 9.
    Kocourek J, Horejsi V (1983) Note on the recent discussion on definition of the term "lectin". In: Bog-Hansen TC, Spengler GA (eds) Lectins: Biology, Biochemistry and Clinical Biochemistry, vol 3. Walter de Gruyter, Berlin and New York, pp 3–6Google Scholar
  10. 10.
    Cantarel BL, Coutinho PM, Rancurel C et al (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37:D233–238PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Fujimoto Z, Kuno A, Kaneko S et al (2000) Crystal structure of Streptomyces olivaceoviridis E-86 β-xylanase containing xylan-binding domain. J Mol Biol 300:575–585PubMedCrossRefGoogle Scholar
  12. 12.
    Vallee F, Lipari F, Yip P et al (2000) Crystal structure of a class I α1,2-mannosidase involved in N-glycan processing and endoplasmic reticulum quality control. EMBO J 19:581–588PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Bianchet MA, Odom EW, Vasta GR, Amzel LM (2002) A novel fucose recognition fold involved in innate immunity. Nat Struct Biol 9:628–634PubMedGoogle Scholar
  14. 14.
    Odom EW, Vasta GR (2006) Characterization of a binary tandem domain F-type lectin from striped bass (Morone saxatilis). J Biol Chem 281:1698–1713PubMedCrossRefGoogle Scholar
  15. 15.
    Beisel HG, Kawabata S, Iwanaga S, Huber R, Bode W (1999) Tachylectin-2: crystal structure of a specific GlcNAc/GalNAc-binding lectin involved in the innate immunity host defense of the Japanese horseshoe crab Tachypleus tridentatus. EMBO J 18:2313–2322PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Sanchez JF, Lescar J, Chazalet V et al (2006) Biochemical and structural analysis of Helix pomatia agglutinin. A hexameric lectin with a novel fold J Biol Chem 281:20171–20180Google Scholar
  17. 17.
    Fujimoto Z, Jackson A, Michikawa M et al (2013) The structure of a Streptomyces avermitilis α-l-rhamnosidase reveals a novel carbohydrate-binding module CBM67 within the six-domain arrangement. J Biol Chem 288:12376–12385PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Sulák O, Cioci G, Delia M et al (2010) A TNF-like trimeric lectin domain from Burkholderia cenocepacia with specificity for fucosylated human histo-blood group antigens. Structure 18:59–72PubMedCrossRefGoogle Scholar
  19. 19.
    Bourne Y, Rouge P, Cambillau C (1990) X-ray structure of a (α-Man(1-3)β-Man(1-4)GlcNAc)-lectin complex at 2.1-Å resolution. The role of water in sugar-lectin interaction. J Biol Chem 265:18161–18165PubMedGoogle Scholar
  20. 20.
    Liao D-I, Kapadia G, Ahmed H, Vasta GR, Herzberg O (1994) Structure of S-lectin, a developmentally regulated vertebrate β-galactoside-binding protein. Proc Natl Acad Sci U S A 91:1428–1432PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Thompson D, Pepys MB, Tickle I, Wood S (2002) The structures of crystalline complexes of human serum amyloid P component with its carbohydrate ligand, the cyclic pyruvate acetal of galactose. J Mol Biol 320:1081–1086PubMedCrossRefGoogle Scholar
  22. 22.
    May AP, Robinson RC, Vinson M, Crocker PR, Jones EY (1998) Crystal structure of the N-terminal domain of sialoadhesin in complex with 3′ sialyllactose at 1.85 Å resolution. Mol Cell 1:719–728PubMedCrossRefGoogle Scholar
  23. 23.
    Weis WI, Drickamer K, Hendrickson WA (1992) Structure of a C-type mannose-binding protein complexed with an oligosaccharide. Nature 360:127–134PubMedCrossRefGoogle Scholar
  24. 24.
    Banerji S, Wright AJ, Noble M et al (2007) Structures of the Cd44-hyaluronan complex provide insight into a fundamental carbohydrate-protein interaction. Nat Struct Mol Biol 14:234–239PubMedCrossRefGoogle Scholar
  25. 25.
    Sun YJ, Chang NC, Hung SI et al (2001) The crystal structure of a novel mammalian lectin, Ym1, suggests a saccharide binding site. J Biol Chem 276:17507–17514PubMedCrossRefGoogle Scholar
  26. 26.
    Karaveg K, Siriwardena A, Tempel W et al (2005) Mechanism of class 1 (glycosylhydrolase family 47) α-mannosidases involved in N-glycan processing and endoplasmic reticulum quality control. J Biol Chem 280:16197–16207PubMedCrossRefGoogle Scholar
  27. 27.
    Rutenber E, Ready M, Robertus JD (1987) Structure and evolution of ricin B chain. Nature 326:624–626PubMedCrossRefGoogle Scholar
  28. 28.
    Transue TR, Smith AK, Mo H, Goldstein IJ, Saper MA (1997) Structure of benzyl T-antigen disaccharide bound to Amaranthus caudatus agglutinin. Nat Struct Biol 4:779–783PubMedCrossRefGoogle Scholar
  29. 29.
    Strotmeier J, Gu S, Jutzi S et al (2011) The biological activity of botulinum neurotoxin type C is dependent upon novel types of ganglioside binding sites. Mol Microbiol 81:143–156PubMedCrossRefGoogle Scholar
  30. 30.
    Mizushima T, Hirao T, Yoshida Y et al (2004) Structural basis of sugar-recognizing ubiquitin ligase. Nat Struct Mol Biol 11:365–370PubMedCrossRefGoogle Scholar
  31. 31.
    Cioci G, Mitchell EP, Gautier C et al (2003) Structural basis of calcium and galactose recognition by the lectin PA-IL of Pseudomonas aeruginosa. FEBS Lett 555:297–301PubMedCrossRefGoogle Scholar
  32. 32.
    Roberts DL, Weix DJ, Dahms NM, Kim JJ (1998) Molecular basis of lysosomal enzyme recognition: three-dimensional structure of the cation-dependent mannose 6-phosphate receptor. Cell 93:639–648PubMedCrossRefGoogle Scholar
  33. 33.
    Garlatti V, Belloy N, Martin L et al (2007) Structural insights into the innate immune recognition specificities of L- and H-ficolins. EMBO J 26:623–633PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Schallus T, Feher K, Sternberg U, Rybin V, Muhle-Goll C (2010) Analysis of the specific interactions between the lectin domain of malectin and diglucosides. Glycobiology 20:1010–1020PubMedCrossRefGoogle Scholar
  35. 35.
    Kozlov G, Pocanschi CL, Rosenauer A et al (2010) Structural basis of carbohydrate recognition by calreticulin. J Biol Chem 285:38612–38620PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Suetake T, Tsuda S, Kawabata S et al (2000) Chitin-binding proteins in invertebrates and plants comprise a common chitin-binding structural motif. J Biol Chem 275:17929–17932PubMedCrossRefGoogle Scholar
  37. 37.
    Harata K, Muraki M (2000) Crystal structures of Urtica dioica agglutinin and its complex with tri-N-acetylchitotriose. J Mol Biol 297:673–681PubMedCrossRefGoogle Scholar
  38. 38.
    Jeyaprakash AA, Srivastav A, Surolia A, Vijayan M (2004) Structural basis for the carbohydrate specificities of artocarpin: variation in the length of a loop as a strategy for generating ligand specificity. J Mol Biol 338:757–770PubMedCrossRefGoogle Scholar
  39. 39.
    Shirai T, Watanabe Y, Lee MS, Ogawa T, Muramoto K (2009) Structure of rhamnose-binding lectin CSL3: unique pseudo-tetrameric architecture of a pattern recognition protein. J Mol Biol 391:390–403PubMedCrossRefGoogle Scholar
  40. 40.
    Lü S, Liang S, Gu X (1999) Three-dimensional structure of Selenocosmia huwena lectin-I (SHL-I) from the venom of the spider Selenocosmia huwena by 2D-NMR. J Protein Chem 18:609–617PubMedCrossRefGoogle Scholar
  41. 41.
    Marchant J, Cowper B, Liu Y et al (2012) Galactose recognition by the apicomplexan parasite Toxoplasma gondii. J Biol Chem 287:16720–16733PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Garnett JA, Liu Y, Leon E et al (2009) Detailed insights from microarray and crystallographic studies into carbohydrate recognition by microneme protein 1 (MIC1) of Toxoplasma gondii. Protein Sci 18:1935–1947PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Sánchez-Vallet A, Saleem-Batcha R, Kombrink A et al (2013) Fungal effector Ecp6 outcompetes host immune receptor for chitin binding through intrachain LysM dimerization. Elife 2:e00790PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Zebisch M, Strater N (2008) Structural insight into signal conversion and inactivation by NTPDase2 in purinergic signaling. Proc Natl Acad Sci U S A 105:6882–6887PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Hester G, Kaku H, Goldstein IJ, Wright CS (1995) Structure of mannose-specific snowdrop (Galanthus nivalis) lectin is representative of a new plant lectin family. Nat Struct Biol 2:472–479PubMedCrossRefGoogle Scholar
  46. 46.
    Carrizo ME, Capaldi S, Perduca M et al (2005) The antineoplastic lectin of the common edible mushroom (Agaricus bisporus) has two binding sites, each specific for a different configuration at a single epimeric hydroxyl. J Biol Chem 280:10614–10623PubMedCrossRefGoogle Scholar
  47. 47.
    Botos I, O’Keefe BR, Shenoy SR et al (2002) Structures of the complexes of a potent anti-HIV protein cyanovirin-N and high mannose oligosaccharides. J Biol Chem 277:34336–34342PubMedCrossRefGoogle Scholar
  48. 48.
    Cioci G, Mitchell EP, Chazalet V et al (2006) β-Propeller crystal structure of Psathyrella velutina lectin: an integrin-like fungal protein interacting with monosaccharides and calcium. J Mol Biol 357:1575–1591PubMedCrossRefGoogle Scholar
  49. 49.
    Wimmerova M, Mitchell E, Sanchez JF, Gautier C, Imberty A (2003) Crystal structure of fungal lectin: six-bladed β-propeller fold and novel fucose recognition mode for Aleuria aurantia lectin. J Biol Chem 278:27059–27067PubMedCrossRefGoogle Scholar
  50. 50.
    Veelders M, Bruckner S, Ott D et al (2010) Structural basis of flocculin-mediated social behavior in yeast. Proc Natl Acad Sci U S A 107:22511–22516PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Swaminathan S, Furey W, Pletcher J, Sax M (1995) Residues defining V beta specificity in staphylococcal enterotoxins. Nat Struct Biol 2:680–686PubMedCrossRefGoogle Scholar
  52. 52.
    Ling H, Boodhoo A, Hazes B et al (1998) Structure of the Shiga-like toxin I B-pentamer complexed with an analogue of its receptor Gb3. Biochemistry 37:1777–1788PubMedCrossRefGoogle Scholar
  53. 53.
    Mitchell E, Houles C, Sudakevitz D et al (2002) Structural basis for oligosaccharide-mediated adhesion of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. Nat Struct Biol 9:918–921PubMedCrossRefGoogle Scholar
  54. 54.
    Williams DC Jr, Lee JY, Cai M, Bewley CA, Clore GM (2005) Crystal structures of the HIV-1 inhibitory cyanobacterial protein MVL free and bound to Man3GlcNAc2: structural basis for specificity and high-affinity binding to the core pentasaccharide from N-linked oligomannoside. J Biol Chem 280:29269–29276PubMedCrossRefGoogle Scholar
  55. 55.
    Dodson KW, Pinkner JS, Rose T et al (2001) Structural basis of the interaction of the pyelonephritic E. coli adhesin to its human kidney receptor. Cell 105:733–743PubMedCrossRefGoogle Scholar
  56. 56.
    Wellens A, Garofalo C, Nguyen H et al (2008) Intervening with urinary tract infections using anti-adhesives based on the crystal structure of the FimH-oligomannose-3 complex. PLoS One 3:e2040PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Buts L, Wellens A, Van Molle I et al (2005) Impact of natural variation in bacterial F17G adhesins on crystallization behaviour. Acta Crystallogr D Biol Crystallogr 61:1149–1159PubMedCrossRefGoogle Scholar
  58. 58.
    Sauter NK, Hanson JE, Glick GD et al (1992) Binding of influenza virus hemagglutinin to analogs of its cell-surface receptor, sialic acid: analysis by proton nuclear magnetic resonance spectroscopy and X-ray crystallography. Biochemistry 31:9609–9621PubMedCrossRefGoogle Scholar
  59. 59.
    Dormitzer PR, Sun ZY, Wagner G, Harrison SC (2002) The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site. EMBO J 21:885–897PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Fry EE, Tuthill TJ, Harlos K et al (2010) Crystal structure of equine rhinitis A virus in complex with its sialic acid receptor. J Gen Virol 91:1971–1977PubMedCrossRefGoogle Scholar
  61. 61.
    Burmeister WP, Guilligay D, Cusack S, Wadell G, Arnberg N (2004) Crystal structure of species D adenovirus fiber knobs and their sialic acid binding sites. J Virol 78:7727–7736PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Grahn E, Askarieh G, Holmner A et al (2007) Crystal structure of the Marasmius oreades mushroom lectin in complex with a xenotransplantation epitope. J Mol Biol 369:710–721PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Biomolecular Research UnitNational Institute of Agrobiological SciencesTsukubaJapan
  2. 2.Research Center for Stem Cell EngineeringNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan

Personalised recommendations