Lectins pp 555-577 | Cite as

Comprehensive List of Lectins: Origins, Natures, and Carbohydrate Specificities

  • Yuka KobayashiEmail author
  • Hiroaki Tateno
  • Haruko Ogawa
  • Kazuo Yamamoto
  • Jun Hirabayashi
Part of the Methods in Molecular Biology book series (MIMB, volume 1200)


More than 100 years have passed since the first lectin ricin was discovered. Since then, a wide variety of lectins (lect means “select” in Latin) have been isolated from plants, animals, fungi, bacteria, as well as viruses, and their structures and properties have been characterized. At present, as many as 48 protein scaffolds have been identified as functional lectins from the viewpoint of three-dimensional structures as described in this chapter. In this chapter, representative 53 lectins are selected, and their major properties that include hemagglutinating activity, mitogen activity, blood group specificity, molecular weight, metal requirement, and sugar specificities are summarized as a comprehensive table. The list will provide a practically useful, comprehensive list for not only experienced lectin users but also many other non-expert researchers, who are not familiar to lectins and, therefore, have no access to advanced lectin biotechnologies described in other chapters.

Key words

Lectin family Hemagglutinating activity Mitogen activity Blood group specificity Metal requirement Oligosaccharide specificity 


  1. 1.
    Goldstein IJ, Hughes RC, Monsigny M et al (1986) What should be called a lectin. Nature 285:66–66Google Scholar
  2. 2.
    Sharon N, Lis H (2003) Lectins. Springer, DordrechtGoogle Scholar
  3. 3.
    Van Damme EJM, Peumans WJ, Pusztai A et al (1998) Handbook of plant lectins: properties and biomedical applications. Wiley, ChichesterGoogle Scholar
  4. 4.
    Gabius HJ, Andre S, Kaltner H et al (2002) The sugar code: functional lectinomics. Biochim Biophys Acta 1572:165–177PubMedGoogle Scholar
  5. 5.
    Kilpatrick DC (2002) Animal lectins: a historical introduction and overview. Biochim Biophys Acta 1572:187–197PubMedGoogle Scholar
  6. 6.
    Kumar D, Mittal Y (2011) AnimalLectinDb: An integrated animal lectin database. Bioinformation 6:134–136PubMedPubMedCentralGoogle Scholar
  7. 7.
    Fukumori F, Takeuchi N, Hagiwara T et al (1990) Primary structure of a fucose-specific lectin obtained from a mushroom, Aleuria aurantia. J Biochem 107:190–196PubMedGoogle Scholar
  8. 8.
    Harada H, Kamei M, Tokumoto Y et al (1987) Systematic fractionation of oligosaccharides of human immunoglobulin G by serial affinity chromatography on immobilized lectin columns. Anal Biochem 164:374–381PubMedGoogle Scholar
  9. 9.
    Kochibe N, Furukawa K (1980) Purification and properties of a novel fucose-specific hemagglutinin of Aleuria aurantia. Biochemistry 19:2841–2846PubMedGoogle Scholar
  10. 10.
    Presant C A, and Kornfeld S (1972) Characterization of the cell surface receptor for the Agaricus bisporus hemagglutinin. J Biol Chem 247(21):6937–6945Google Scholar
  11. 11.
    Nakamura-Tsuruta S, Kominami J, Kuno A, et al (2006) Evidence that Agaricus bisporus agglutinin (ABA) has dual sugar-binding specificity. Biochem Biophys Res Commun 347:215–220Google Scholar
  12. 12.
    Yu L, Fernig DG, Smith JA et al (1993) Reversible inhibition of proliferation of epithelial cell lines by Agaricus bisporus (edible mushroom) lectin. Cancer Res 53:4627–4632PubMedGoogle Scholar
  13. 13.
    Ban M, Yoon HJ, Demirkan E et al (2005) Structural basis of a fungal galectin from Agrocybe cylindracea for recognizing sialoconjugate. J Mol Biol 351:695–706PubMedGoogle Scholar
  14. 14.
    Imamura K, Takeuchi H, Yabe R et al (2011) Engineering of the glycan-binding specificity of Agrocybe cylindracea galectin towards alpha(2,3)-linked sialic acid by saturation mutagenesis. J Biochem 150:545–552PubMedGoogle Scholar
  15. 15.
    Liu C, Zhao X, Xu XC et al (2008) Hemagglutinating activity and conformation of a lactose-binding lectin from mushroom Agrocybe cylindracea. Int J Biol Macromol 42: 138–144PubMedGoogle Scholar
  16. 16.
    Ngai PH, Zhao Z, Ng TB (2005) Agrocybin, an antifungal peptide from the edible mushroom Agrocybe cylindracea. Peptides 26:191–196PubMedGoogle Scholar
  17. 17.
    Wang H, Ng TB, Liu Q (2002) Isolation of a new heterodimeric lectin with mitogenic activity from fruiting bodies of the mushroom Agrocybe cylindracea. Life Sci 70:877–885PubMedGoogle Scholar
  18. 18.
    Yagi F, Hiroyama H, Kodama S (2001) Agrocybe cylindracea lectin is a member of the galectin family. Glycoconj J 18:745–749PubMedGoogle Scholar
  19. 19.
    Akiyoshi H, Sugii S, Nahid MA et al (2011) Detection of chromogranin A in the adrenal gland extracts of different animal species by an enzyme-linked immunosorbent assay using Thomsen-Friedenreich antigen-specific Amaranthus caudatus lectin. Vet Immunol Immunopathol 144:255–258PubMedGoogle Scholar
  20. 20.
    Boland CR, Chen YF, Rinderle SJ et al (1991) Use of the lectin from Amaranthus caudatus as a histochemical probe of proliferating colonic epithelial cells. Cancer Res 51:657–665PubMedGoogle Scholar
  21. 21.
    Rinderle SJ, Goldstein IJ, Matta KL et al (1989) Isolation and characterization of amaranthin, a lectin present in the seeds of Amaranthus caudatus, that recognizes the T- (or cryptic T)-antigen. J Biol Chem 264: 16123–16131PubMedGoogle Scholar
  22. 22.
    Rinderle SJ, Goldstein IJ, Remsen EE (1990) Physicochemical properties of amaranthin, the lectin from Amaranthus caudatus seeds. Biochemistry 29:10555–10561PubMedGoogle Scholar
  23. 23.
    Wu AM, Wu JH, Yang Z et al (2008) Differential contributions of recognition factors of two plant lectins—Amaranthus caudatus lectin and Arachis hypogea agglutinin, reacting with Thomsen-Friedenreich disaccharide (Galbeta1-3GalNAcalpha1-Ser/Thr). Biochimie 90:1769–1780PubMedGoogle Scholar
  24. 24.
    Ishida H, Hata Y, Kawato A et al (2004) Isolation of a novel promoter for efficient protein production in Aspergillus oryzae. Biosci Biotechnol Biochem 68:1849–1857PubMedGoogle Scholar
  25. 25.
    Matsumura K, Higashida K, Ishida H et al (2007) Carbohydrate binding specificity of a fucose-specific lectin from Aspergillus oryzae: a novel probe for core fucose. J Biol Chem 282:15700–15708PubMedGoogle Scholar
  26. 26.
    Tateno H, Nakamura-Tsuruta S, Hirabayashi J (2009) Comparative analysis of core-fucose-binding lectins from Lens culinaris and Pisum sativum using frontal affinity chromatography. Glycobiology 19:527–536PubMedGoogle Scholar
  27. 27.
    Jin ZQ, Zhang DY, Xu BY (2004) Cloning and developmental and tissue-specific expression of banana (Musa acuminate AAA) lectin gene. Yi Chuan Xue Bao 31:508–512PubMedGoogle Scholar
  28. 28.
    Meagher JL, Winter HC, Ezell P et al (2005) Crystal structure of banana lectin reveals a novel second sugar binding site. Glycobiology 15:1033–1042PubMedGoogle Scholar
  29. 29.
    Peumans WJ, Zhang W, Barre A et al (2000) Fruit-specific lectins from banana and plantain. Planta 211:546–554PubMedGoogle Scholar
  30. 30.
    Onuma Y, Tateno H, Hirabayashi J et al (2013) rBC2LCN, a new probe for live cell imaging of human pluripotent stem cells. Biochem Biophys Res Commun 431:524–529PubMedGoogle Scholar
  31. 31.
    Sulak O, Cioci G, Delia M et al (2010) A TNF-like trimeric lectin domain from Burkholderia cenocepacia with specificity for fucosylated human histo-blood group antigens. Structure 18:59–72PubMedGoogle Scholar
  32. 32.
    Sulak O, Cioci G, Lameignere E et al (2011) Burkholderia cenocepacia BC2L-C is a super lectin with dual specificity and proinflammatory activity. PLoS Pathog 7:e1002238PubMedPubMedCentralGoogle Scholar
  33. 33.
    Tateno H, Matsushima A, Hiemori K et al (2013) Podocalyxin is a glycoprotein ligand of the human pluripotent stem cell-specific probe rBC2LCN. Stem Cells Trans Med 2:265–273Google Scholar
  34. 34.
    Tateno H, Toyota M, Saito S et al (2011) Glycome diagnosis of human induced pluripotent stem cells using lectin microarray. J Biol Chem 286:20345–20353PubMedPubMedCentralGoogle Scholar
  35. 35.
    Imai Y, Osawa T (1983) Enrichment of IL-2-producer T cells from mouse spleen by use of Bauhinia purpurea lectin. Scand J Immunol 18:217–224PubMedGoogle Scholar
  36. 36.
    Kasper M, Schuh D, Muller M (1994) Bauhinia purpurea lectin (BPA) binding of rat type I pneumocytes: alveolar epithelial alterations after radiation-induced lung injury. Exp Toxicol Pathol 46:361–367PubMedGoogle Scholar
  37. 37.
    Kusui K, Yamamoto K, Konami Y et al (1991) cDNA cloning and expression of Bauhinia purpurea lectin. J Biochem 109:899–903PubMedGoogle Scholar
  38. 38.
    Osawa T, Irimura T, Kawaguchi T (1978) Bauhinia purpurea agglutinin. Methods Enzymol 50:367–372PubMedGoogle Scholar
  39. 39.
    Sarker AB, Akagi T, Teramoto N et al (1994) Bauhinia purpurea (BPA) binding to normal and neoplastic thyroid glands. Pathol Res Pract 190:1005–1011PubMedGoogle Scholar
  40. 40.
    Sarker AB, Koirala TR, Aftabuddin et al (1994) Lectin histochemistry of normal lung and pulmonary carcinoma. Indian J Pathol Microbiol 37:29–38PubMedGoogle Scholar
  41. 41.
    Sarker AB, Koirala TR, Murakami I (1994) Bauhinia purpurea agglutinin (BPA) binding sites in human gastrointestinal tract. Indian J Pathol Microbiol 37:21–28PubMedGoogle Scholar
  42. 42.
    Sarker AB, Koirala TR, Murakami I et al (1995) Bauhinia purpurea and Pisum sativum lectin binding in human breast. Indian J Pathol Microbiol 38:261–265PubMedGoogle Scholar
  43. 43.
    Shue GL, Kawa S, Kato M et al (1993) Expression of glycoconjugates in pancreatic, gastric, and colonic tissue by Bauhinia purpurea, Vicia villosa, and peanut lectins. Scand J Gastroenterol 28:599–604PubMedGoogle Scholar
  44. 44.
    Yamamoto K, Konami Y, Osawa T et al (1992) Alteration of the carbohydrate-binding specificity of the Bauhinia purpurea lectin through the preparation of a chimeric lectin. J Biochem 111:87–90PubMedGoogle Scholar
  45. 45.
    Bourne Y, Roig-Zamboni V, Barre A et al (2004) The crystal structure of the Calystegia sepium agglutinin reveals a novel quaternary arrangement of lectin subunits with a beta-prism fold. J Biol Chem 279:527–533PubMedGoogle Scholar
  46. 46.
    Nakamura-Tsuruta S, Uchiyama N, Peumans WJ et al (2008) Analysis of the sugar-binding specificity of mannose-binding-type Jacalin-related lectins by frontal affinity chromatography—an approach to functional classification. FEBS J 275:1227–1239PubMedGoogle Scholar
  47. 47.
    Peumans WJ, Winter HC, Bemer V et al (1997) Isolation of a novel plant lectin with an unusual specificity from Calystegia sepium. Glycoconj J 14:259–265PubMedGoogle Scholar
  48. 48.
    Van Damme EJ, Barre A, Verhaert P et al (1996) Molecular cloning of the mitogenic mannose/maltose-specific rhizome lectin from Calystegia sepium. FEBS Lett 397:352–356PubMedGoogle Scholar
  49. 49.
    Carrington DM, Auffret A, Hanke DE (1985) Polypeptide ligation occurs during post-translational modification of concanavalin A. Nature 313:64–67PubMedGoogle Scholar
  50. 50.
    Derewenda Z, Yariv J, Helliwell JR et al (1989) The structure of the saccharide-binding site of concanavalin A. EMBO J 8:2189–2193PubMedPubMedCentralGoogle Scholar
  51. 51.
    Goldstein IJ, Reichert CM, Misaki A (1974) Interaction of concanavalin A with model substrates. Ann N Y Acad Sci 234:283–296PubMedGoogle Scholar
  52. 52.
    Kornfeld R, Ferris C (1975) Interaction of immunoglobulin glycopeptides with concanavalin A. J Biol Chem 250:2614–2619PubMedGoogle Scholar
  53. 53.
    Mega T, Oku H, Hase S (1992) Characterization of carbohydrate-binding specificity of concanavalin A by competitive binding of pyridylamino sugar chains. J Biochem 111: 396–400PubMedGoogle Scholar
  54. 54.
    Ohyama Y, Kasai K, Nomoto H et al (1985) Frontal affinity chromatography of ovalbumin glycoasparagines on a concanavalin A-sepharose column. A quantitative study of the binding specificity of the lectin. J Biol Chem 260: 6882–6887PubMedGoogle Scholar
  55. 55.
    Casset F, Peters T, Etzler M et al (1996) Conformational analysis of blood group A trisaccharide in solution and in the binding site of Dolichos biflorus lectin using transient and transferred nuclear Overhauser enhancement (NOE) and rotating-frame NOE experiments. Eur J Biochem 239:710–719PubMedGoogle Scholar
  56. 56.
    Etzler ME, Gupta S, Borrebaeck C (1981) Carbohydrate binding properties of the Dolichos biflorus lectin and its subunits. J Biol Chem 256:2367–2370PubMedGoogle Scholar
  57. 57.
    Etzler ME, Kabat EA (1970) Purification and characterization of a lectin (plant hemagglutinin) with blood group A specificity from Dolichos biflorus. Biochemistry 9:869–877PubMedGoogle Scholar
  58. 58.
    Hamelryck TW, Loris R, Bouckaert J et al (1999) Carbohydrate binding, quaternary structure and a novel hydrophobic binding site in two legume lectin oligomers from Dolichos biflorus. J Mol Biol 286:1161–1177PubMedGoogle Scholar
  59. 59.
    Hammarstrom S, Murphy LA, Goldstein IJ et al (1977) Carbohydrate binding specificity of four N-acetyl-D-galactosamine-“specific” lectins: Helix pomatia A hemagglutinin, soy bean agglutinin, lima bean lectin, and Dolichos biflorus lectin. Biochemistry 16:2750–2755PubMedGoogle Scholar
  60. 60.
    Schnell DJ, Etzler ME (1987) Primary structure of the Dolichos biflorus seed lectin. J Biol Chem 262:7220–7225PubMedGoogle Scholar
  61. 61.
    Crowley JF, Goldstein IJ (1981) Datura stramonium lectin: isolation and characterization of the homogeneous lectin. FEBS Lett 130:149Google Scholar
  62. 62.
    Cummings RD, Kornfeld S (1984) The distribution of repeating [Gal beta 1,4GlcNAc beta 1,3] sequences in asparagine-linked oligosaccharides of the mouse lymphoma cell lines BW5147 and PHAR 2.1. J Biol Chem 259: 6253–6260PubMedGoogle Scholar
  63. 63.
    Endo T, Iino K, Nozawa S et al (1988) Immobilized Datura stramonium agglutinin column chromatography, a novel method to discriminate the urinary hCGs of patients with invasive mole and choriocarcinoma from those of normal pregnant women and patients with hydatidiform mole. Jpn J Cancer Res 79: 160–164PubMedGoogle Scholar
  64. 64.
    Yamashita K, Totani K, Ohkura T et al (1987) Carbohydrate binding properties of complex-type oligosaccharides on immobilized Datura stramonium lectin. J Biol Chem 262: 1602–1607PubMedGoogle Scholar
  65. 65.
    De Boeck H, Loontiens FG, Lis H et al (1984) Binding of simple carbohydrates and some N-acetyllactosamine-containing oligosaccharides to Erythrina cristagalli agglutinin as followed with a fluorescent indicator ligand. Arch Biochem Biophys 234:297–304PubMedGoogle Scholar
  66. 66.
    Iglesias JL, Lis H, Sharon N (1982) Purification and properties of a D-galactose/N-acetyl-D-galactosamine-specific lectin from Erythrina cristagalli. Eur J Biochem 123:247–252PubMedGoogle Scholar
  67. 67.
    Kaladas PM, Kabat EA, Iglesias JL et al (1982) Immunochemical studies on the combining site of the D-galactose/N-acetyl-D-galactosamine specific lectin from Erythrina cristagalli seeds. Arch Biochem Biophys 217: 624–637PubMedGoogle Scholar
  68. 68.
    Teneberg S, Angstrom J, Jovall PA et al (1994) Characterization of binding of Gal beta 4GlcNAc-specific lectins from Erythrina cristagalli and Erythrina corallodendron to glycosphingolipids. Detection, isolation, and characterization of a novel glycosphingolipid of bovine buttermilk. J Biol Chem 269: 8554–8563PubMedGoogle Scholar
  69. 69.
    Fouquaert E, Peumans WJ, Smith DF et al (2008) The “old” Euonymus europaeus agglutinin represents a novel family of ubiquitous plant proteins. Plant Physiol 147:1316–1324PubMedPubMedCentralGoogle Scholar
  70. 70.
    Roussel F, Dalion J, Wissocq JC (1992) Euonymus europaeus lectin as an endothelial and epithelial marker in canine tissues. Lab Anim 26:114–121PubMedGoogle Scholar
  71. 71.
    Hester G, Kaku H, Goldstein IJ et al (1995) Structure of mannose-specific snowdrop (Galanthus nivalis) lectin is representative of a new plant lectin family. Nat Struct Biol 2: 472–479PubMedGoogle Scholar
  72. 72.
    Van Damme EJ, De Clercq N, Claessens F et al (1991) Molecular cloning and characterization of multiple isoforms of the snowdrop (Galanthus nivalis L.) lectin. Planta 186: 35–43PubMedGoogle Scholar
  73. 73.
    Van Damme EJ, Kaku H, Perini F et al (1991) Biosynthesis, primary structure and molecular cloning of snowdrop (Galanthus nivalis L.) lectin. Eur J Biochem 202:23–30PubMedGoogle Scholar
  74. 74.
    Van Damme EJ, Peumans WJ (1988) Biosynthesis of the snowdrop (Galanthus nivalis) lectin in ripening ovaries. Plant Physiol 86: 922–926PubMedPubMedCentralGoogle Scholar
  75. 75.
    Eckhardt AE, Malone BN, Goldstein IJ (1982) Inhibition of Ehrlich ascites tumor cell growth by Griffonia simplicifolia I lectin in vivo. Cancer Res 42:2977–2979PubMedGoogle Scholar
  76. 76.
    Edge AS, Spiro RG (1984) Presence of sulfate in N-glycosidically linked carbohydrate units of calf thyroid plasma membrane glycoproteins. J Biol Chem 259:4710–4713PubMedGoogle Scholar
  77. 77.
    Knibbs RN, Perini F, Goldstein IJ (1989) Structure of the major concanavalin A reactive oligosaccharides of the extracellular matrix component laminin. Biochemistry 28:6379–6392PubMedGoogle Scholar
  78. 78.
    Maddox DE, Goldstein IJ, Lobuglio AF (1982) Griffonia simplicifolia I lectin mediates macrophage-induced cytotoxicity against Ehrlich ascites tumor. Cell Immunol 71:202–207PubMedGoogle Scholar
  79. 79.
    Maddox DE, Shibata S, Goldstein IJ (1982) Stimulated macrophages express a new glycoprotein receptor reactive with Griffonia simplicifolia I-B4 isolectin. Proc Natl Acad Sci U S A 79:166–170PubMedPubMedCentralGoogle Scholar
  80. 80.
    Murphy LA, Goldstein IJ (1977) Five alpha-D-galactopyranosyl-binding isolectins from Bandeiraea simplicifolia seeds. J Biol Chem 252:4739–4742PubMedGoogle Scholar
  81. 81.
    Peters BP, Goldstein IJ (1979) The use of fluorescein-conjugated Bandeiraea simplicifolia B4-isolectin as a histochemical reagent for the detection of alpha-D-galactopyranosyl groups. Their occurrence in basement membranes. Exp Cell Res 120:321–334PubMedGoogle Scholar
  82. 82.
    Shibata S, Goldstein IJ, Baker DA (1982) Isolation and characterization of a Lewis b-active lectin from Griffonia simplicifolia seeds. J Biol Chem 257:9324–9329PubMedGoogle Scholar
  83. 83.
    Balzarini J, Hatse S, Vermeire K et al (2004) Mannose-specific plant lectins from the Amaryllidaceae family qualify as efficient microbicides for prevention of human immunodeficiency virus infection. Antimicrob Agents Chemother 48:3858–3870PubMedPubMedCentralGoogle Scholar
  84. 84.
    Balzarini J, Schols D, Neyts J et al (1991) Alpha-(1-3)- and alpha-(1-6)-D-mannose-specific plant lectins are markedly inhibitory to human immunodeficiency virus and cytomegalovirus infections in vitro. Antimicrob Agents Chemother 35:410–416PubMedPubMedCentralGoogle Scholar
  85. 85.
    Kaku H, Van Damme EJ, Peumans WJ et al (1990) Carbohydrate-binding specificity of the daffodil (Narcissus pseudonarcissus) and amaryllis (Hippeastrum hybr.) bulb lectins. Arch Biochem Biophys 279:298–304PubMedGoogle Scholar
  86. 86.
    Lisowska E, Duk M (1972) The reaction of products of sequential periodate oxidation of human erythrocyte glycoproteins with hemagglutinin from Helix pomatia. Arch Immunol Ther Exp (Warsz) 20:869–875Google Scholar
  87. 87.
    Axelsson B, Kimura A, Hammarstrom S et al (1978) Helix pomatia A hemagglutinin: selectivity of binding to lymphocyte surface glycoproteins on T cells and certain B cells. Eur J Immunol 8:757–764PubMedGoogle Scholar
  88. 88.
    Brostrom H, Hellstrom U, Hammarstrom S et al (1985) A new surface marker on equine peripheral blood lymphocytes. I. Subpopulations of lymphocytes with receptors for Helix pomatia A hemagglutinin (HP). Vet Immunol Immunopathol 8:35–46PubMedGoogle Scholar
  89. 89.
    Dillner ML, Hammarstrom S, Perlmann P (1975) The lack of mitogenic response of neuraminidase-treated and untreated human blood lymphocytes to divalent, hexavalent, or insoluble Helix pomatia a hemagglutinin. Exp Cell Res 96:374–382PubMedGoogle Scholar
  90. 90.
    Hellstrom U, Hammarstrom ML, Hammarstrom S et al (1984) Fractionation of human lymphocytes on Helix pomatia a hemagglutinin-sepharose and wheat germ agglutinin-sepharose. Methods Enzymol 108:153–168PubMedGoogle Scholar
  91. 91.
    Hellstrom U, Hammarstrom S, Klein G (1978) Enrichment of Helix pomatia (HP) lectin binding variant from the TA3St mouse ascites tumor by repeated column selection. Eur J Cancer 14:1265–1272PubMedGoogle Scholar
  92. 92.
    Morein B, Hellstrom U, Axelsson L et al (1979) Helix pomatia a hemagglutinin, a surface marker for bovine T-lymphocytes. Vet Immunol Immunopathol 1:27–36PubMedGoogle Scholar
  93. 93.
    Poros A, Ahrlund-Richter L, Klein E et al (1983) Expression of Helix pomatia (HP) haemagglutinin receptors on cytolytic lymphocytes activated in mixed cultures. J Immunol Methods 57:9–19PubMedGoogle Scholar
  94. 94.
    Antony L, Basu D, Appukuttan PS (1989) Alpha-galactoside-binding isolectins from wild jack fruit seed (Artocarpus hirsuta): purification and properties. Indian J Biochem Biophys 26:361–366PubMedGoogle Scholar
  95. 95.
    Appukuttan PS, Kumar GS, Basu D (1984) Polysaccharide precipitation as a model to study sugar binding by lectins: jack fruit seed lectin interaction with galactomannan. Indian J Biochem Biophys 21:353–356PubMedGoogle Scholar
  96. 96.
    Arslan MI, Chulavatnatol M (2000) Characterisation of Jack fruit lectin. Bangladesh Med Res Counc Bull 26:23–26PubMedGoogle Scholar
  97. 97.
    Basu D, Delucas L, Parks EH et al (1988) Preliminary crystallographic study of the alpha-D-galactose-specific lectin from jack fruit (Artocarpus integra) seeds. J Mol Biol 201: 661–662PubMedGoogle Scholar
  98. 98.
    Bourne Y, Astoul CH, Zamboni V et al (2002) Structural basis for the unusual carbohydrate-binding specificity of jacalin towards galactose and mannose. Biochem J 364:173–180PubMedPubMedCentralGoogle Scholar
  99. 99.
    Jeyaprakash AA, Geetha Rani P, Banuprakash Reddy G et al (2002) Crystal structure of the jacalin-T-antigen complex and a comparative study of lectin-T-antigen complexes. J Mol Biol 321:637–645PubMedGoogle Scholar
  100. 100.
    Komath SS, Bhanu K, Maiya BG et al (2000) Binding of porphyrins by the tumor-specific lectin, jacalin [Jack fruit (Artocarpus integrifolia) agglutinin]. Biosci Rep 20:265–276PubMedGoogle Scholar
  101. 101.
    Mahanta SK, Sanker S, Rao NV et al (1992) Primary structure of a Thomsen-Friedenreich-antigen-specific lectin, jacalin [Artocarpus integrifolia (jack fruit) agglutinin]. Evidence for the presence of an internal repeat. Biochem J 284(Pt 1):95–101PubMedPubMedCentralGoogle Scholar
  102. 102.
    Namjuntra P, Muanwongyathi P, Chulavatnatol M (1985) A sperm-agglutinating lectin from seeds of Jack fruit (Artocarpus heterophyllus). Biochem Biophys Res Commun 128:833–839PubMedGoogle Scholar
  103. 103.
    Pratap JV, Jeyaprakash AA, Rani PG et al (2002) Crystal structures of artocarpin, a Moraceae lectin with mannose specificity, and its complex with methyl-alpha-D-mannose: implications to the generation of carbohydrate specificity. J Mol Biol 317:237–247PubMedGoogle Scholar
  104. 104.
    Remani P, Augustine J, Vijayan KK et al (1989) Jack fruit lectin binding pattern in benign and malignant lesions of the breast. In Vivo 3:275–278PubMedGoogle Scholar
  105. 105.
    Remani P, Joy A, Vijayan KK et al (1990) Jack fruit lectin binding pattern in carcinoma of the uterine cervix. J Exp Pathol 5:89–96PubMedGoogle Scholar
  106. 106.
    Remani P, Nair RA, Sreelekha TT et al (2000) Altered expression of jack fruit lectin specific glycoconjugates in benign and malignant human colorectum. J Exp Clin Cancer Res 19:519–523PubMedGoogle Scholar
  107. 107.
    Restum-Miguel N, Prouvost-Danon A (1985) Effects of multiple oral dosing on IgE synthesis in mice: oral sensitization by albumin extracts from seeds of Jack fruit (Artocarpus integrifolia) containing lectins. Immunology 54:497–504PubMedPubMedCentralGoogle Scholar
  108. 108.
    Casset F, Hamelryck T, Loris R et al (1995) NMR, molecular modeling, and crystallographic studies of lentil lectin-sucrose interaction. J Biol Chem 270:25619–25628PubMedGoogle Scholar
  109. 109.
    Kaifu R, Osawa T, Jeanloz RW (1975) Synthesis of 2-O-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-D-mannose, and its interaction with D-mannose-specific lectins. Carbohydr Res 40:111–117PubMedGoogle Scholar
  110. 110.
    Loris R, Casset F, Bouckaert J et al (1994) The monosaccharide binding site of lentil lectin: an X-ray and molecular modelling study. Glycoconj J 11:507–517PubMedGoogle Scholar
  111. 111.
    Loris R, Steyaert J, Maes D et al (1993) Crystal structure determination and refinement at 2.3-A resolution of the lentil lectin. Biochemistry 32:8772–8781PubMedGoogle Scholar
  112. 112.
    Roth J, Neupert G, Thoss K (1975) Interaction of Lens culinaris lectin, concanavalin A, Ricinus communis agglutinin and wheat germ agglutinin with the cell surface of normal and transformed rat liver cells. Exp Pathol (Jena) 10:309–317Google Scholar
  113. 113.
    Schwarz FP, Misquith S, Surolia A (1996) Effect of substituent on the thermodynamics of D-glucopyranoside binding to concanavalin A, pea (Pisum sativum) lectin and lentil (Lens culinaris) lectin. Biochem J 316(Pt 1): 123–129PubMedPubMedCentralGoogle Scholar
  114. 114.
    Schwarz FP, Puri KD, Bhat RG et al (1993) Thermodynamics of monosaccharide binding to concanavalin A, pea (Pisum sativum) lectin, and lentil (Lens culinaris) lectin. J Biol Chem 268:7668–7677PubMedGoogle Scholar
  115. 115.
    Kilpatrick DC, Graham C, Urbaniak SJ (1986) Inhibition of human lymphocyte transformation by tomato lectin. Scand J Immunol 24:11–19PubMedGoogle Scholar
  116. 116.
    Kilpatrick DC, Graham C, Urbaniak SJ et al (1984) A comparison of tomato (Lycopersicon esculentum) lectin with its deglycosylated derivative. Biochem J 220:843–847PubMedPubMedCentralGoogle Scholar
  117. 117.
    Oguri S, Amano K, Nakashita H et al (2008) Molecular structure and properties of lectin from tomato fruit. Biosci Biotechnol Biochem 72:2640–2650PubMedGoogle Scholar
  118. 118.
    Peumans WJ, Rouge P, Van Damme EJ (2003) The tomato lectin consists of two homologous chitin-binding modules separated by an extensin-like linker. Biochem J 376:717–724PubMedPubMedCentralGoogle Scholar
  119. 119.
    Konami Y, Yamamoto K, Osawa T (1990) The primary structure of the Lotus tetragonolobus seed lectin. FEBS Lett 268:281–286PubMedGoogle Scholar
  120. 120.
    Moreno FB, de Oliveira TM, Martil DE et al (2008) Identification of a new quaternary association for legume lectins. J Struct Biol 161:133–143PubMedGoogle Scholar
  121. 121.
    Imberty A, Gautier C, Lescar J et al (2000) An unusual carbohydrate binding site revealed by the structures of two Maackia amurensis lectins complexed with sialic acid-containing oligosaccharides. J Biol Chem 275: 17541–17548PubMedGoogle Scholar
  122. 122.
    Knibbs RN, Goldstein IJ, Ratcliffe RM et al (1991) Characterization of the carbohydrate binding specificity of the leukoagglutinating lectin from Maackia amurensis. Comparison with other sialic acid-specific lectins. J Biol Chem 266:83–88PubMedGoogle Scholar
  123. 123.
    Konami Y, Ishida C, Yamamoto K et al (1994) A unique amino acid sequence involved in the putative carbohydrate-binding domain of a legume lectin specific for sialylated carbohydrate chains: primary sequence determination of Maackia amurensis hemagglutinin (MAH). J Biochem 115:767–777PubMedGoogle Scholar
  124. 124.
    Yamamoto K, Konami Y, Irimura T (1997) Sialic acid-binding motif of Maackia amurensis lectins. J Biochem 121:756–761PubMedGoogle Scholar
  125. 125.
    Grahn E, Askarieh G, Holmner A et al (2007) Crystal structure of the Marasmius oreades mushroom lectin in complex with a xenotransplantation epitope. J Mol Biol 369: 710–721PubMedGoogle Scholar
  126. 126.
    Grahn E, Holmner A, Cronet C et al (2004) Crystallization and preliminary X-ray crystallographic studies of a lectin from the mushroom Marasmius oreades. Acta Crystallogr D Biol Crystallogr 60:2038–2039PubMedGoogle Scholar
  127. 127.
    Grahn EM, Winter HC, Tateno H et al (2009) Structural characterization of a lectin from the mushroom Marasmius oreades in complex with the blood group B trisaccharide and calcium. J Mol Biol 390:457–466PubMedPubMedCentralGoogle Scholar
  128. 128.
    Kirkeby S, Winter HC, Goldstein IJ (2004) Comparison of the binding properties of the mushroom Marasmius oreades lectin and Griffonia simplicifolia I-B isolectin to alphagalactosyl carbohydrate antigens in the surface phase. Xenotransplantation 11:254–261PubMedGoogle Scholar
  129. 129.
    Loganathan D, Winter HC, Judd WJ et al (2003) Immobilized Marasmius oreades agglutinin: use for binding and isolation of glycoproteins containing the xenotransplantation or human type B epitopes. Glycobiology 13:955–960PubMedGoogle Scholar
  130. 130.
    Rempel BP, Winter HC, Goldstein IJ et al (2002) Characterization of the recognition of blood group B trisaccharide derivatives by the lectin from Marasmius oreades using frontal affinity chromatography-mass spectrometry. Glycoconj J 19:175–180PubMedGoogle Scholar
  131. 131.
    Tateno H, Goldstein IJ (2004) Partial identification of carbohydrate-binding sites of a Galalpha1,3Galbeta1,4GlcNAc-specific lectin from the mushroom Marasmius oreades by site-directed mutagenesis. Arch Biochem Biophys 427:101–109PubMedGoogle Scholar
  132. 132.
    Teneberg S, Alsen B, Angstrom J et al (2003) Studies on Galalpha3-binding proteins: comparison of the glycosphingolipid binding specificities of Marasmius oreades lectin and Euonymus europaeus lectin. Glycobiology 13: 479–486PubMedGoogle Scholar
  133. 133.
    Allen PZ, Connelly MC, Apicella MA (1980) Interaction of lectins with Neisseria gonorrhoeae. Can J Microbiol 26:468–474PubMedGoogle Scholar
  134. 134.
    Barton RW (1982) The binding of Maclura pomifera lectin to cells of the T-lymphocyte lineage in the rat. Cell Immunol 67:101–111Google Scholar
  135. 135.
    Bausch JN, Poretz RD (1977) Purification and properties of the hemagglutinin from Maclura pomifera seeds. Biochemistry 16: 5790–5794PubMedGoogle Scholar
  136. 136.
    Bausch JN, Richey J, Poretz RD (1981) Five structurally related proteins from affinity-purified Maclura pomifera lectin. Biochemistry 20:2618–2620PubMedGoogle Scholar
  137. 137.
    Hearn MT, Smith PK, Mallia AK (1982) Isolation of the Maclura pomifera hemagglutinin on a deoxymelibiotol affinity support and preliminary characterization by buffer electrofocusing and high-performance liquid chromatography. Biosci Rep 2:247–255PubMedGoogle Scholar
  138. 138.
    Jirgensons B (1980) Circular dichroism tests on the effect of alkali on conformation of lectins. Biochim Biophys Acta 625:193–201PubMedGoogle Scholar
  139. 139.
    Jones JM, Soderberg F (1979) Cytotoxicity of lymphoid cells induced by Maclura pomifera (MP) lectin. Cell Immunol 42: 319–326PubMedGoogle Scholar
  140. 140.
    Reano A, Faure M, Jacques Y et al (1982) Lectins as markers of human epidermal cell differentiation. Differentiation 22:205–210PubMedGoogle Scholar
  141. 141.
    Sarkar M, Wu AM, Kabat EA (1981) Immunochemical studies on the carbohydrate specificity of Maclura pomifera lectin. Arch Biochem Biophys 209:204–218PubMedGoogle Scholar
  142. 142.
    Ulevitch RJ, Jones JM, Feldman JD (1974) Isolation and characterization of Maclura pomifera (MP) lectin. Prep Biochem 4: 273–281PubMedGoogle Scholar
  143. 143.
    Van Damme EJ, Allen AK, Peumans WJ (1987) Leaves of the orchid twayblade (Listera ovata) contain a mannose-specific lectin. Plant Physiol 85:566–569PubMedPubMedCentralGoogle Scholar
  144. 144.
    Avichezer D, Gilboa-Garber N, Garber NC et al (1994) Pseudomonas aeruginosa PA-I lectin gene molecular analysis and expression in Escherichia coli. Biochim Biophys Acta 1218:11–20Google Scholar
  145. 145.
    Avichezer D, Katcoff DJ, Garber NC et al (1992) Analysis of the amino acid sequence of the Pseudomonas aeruginosa galactophilic PA-I lectin. J Biol Chem 267:23023–23027PubMedGoogle Scholar
  146. 146.
    Blanchard B, Nurisso A, Hollville E et al (2008) Structural basis of the preferential binding for globo-series glycosphingolipids displayed by Pseudomonas aeruginosa lectin I. J Mol Biol 383:837–853PubMedGoogle Scholar
  147. 147.
    Chen CP, Song SC, Gilboa-Garber N et al (1998) Studies on the binding site of the galactose-specific agglutinin PA-IL from Pseudomonas aeruginosa. Glycobiology 8:7–16PubMedGoogle Scholar
  148. 148.
    Cioci G, Mitchell EP, Gautier C et al (2003) Structural basis of calcium and galactose recognition by the lectin PA-IL of Pseudomonas aeruginosa. FEBS Lett 555:297–301PubMedGoogle Scholar
  149. 149.
    Garber N, Guempel U, Belz A et al (1992) On the specificity of the D-galactose-binding lectin (PA-I) of Pseudomonas aeruginosa and its strong binding to hydrophobic derivatives of D-galactose and thiogalactose. Biochim Biophys Acta 1116:331–333Google Scholar
  150. 150.
    Gilboa-Garber N (1972) Purification and properties of hemagglutinin from Pseudomonas aeruginosa and its reaction with human blood cells. Biochim Biophys Acta 273: 165–173PubMedGoogle Scholar
  151. 151.
    Gilboa-Garber N (1982) Pseudomonas aeruginosa lectins. Methods Enzymol 83:378–385PubMedGoogle Scholar
  152. 152.
    Gilboa-Garber N, Katcoff DJ, Garber NC (2000) Identification and characterization of Pseudomonas aeruginosa PA-IIL lectin gene and protein compared to PA-IL. FEMS Immunol Med Microbiol 29:53–57PubMedGoogle Scholar
  153. 153.
    Gilboa-Garber N, Mizrahi L (1979) Interaction of the mannosephilic lectins of Pseudomonas aeruginosa with luminous species of marine enterobacteria. Microbios 26: 31–36PubMedGoogle Scholar
  154. 154.
    Gilboa-Garber N, Sudakevitz D, Sheffi M et al (1994) PA-I and PA-II lectin interactions with the ABO(H) and P blood group glycosphingolipid antigens may contribute to the broad spectrum adherence of Pseudomonas aeruginosa to human tissues in secondary infections. Glycoconj J 11:414–417PubMedGoogle Scholar
  155. 155.
    Nurisso A, Blanchard B, Audfray A et al (2010) Role of water molecules in structure and energetics of Pseudomonas aeruginosa lectin I interacting with disaccharides. J Biol Chem 285:20316–20327PubMedPubMedCentralGoogle Scholar
  156. 156.
    Buts L, Dao-Thi MH, Loris R et al (2001) Weak protein-protein interactions in lectins: the crystal structure of a vegetative lectin from the legume Dolichos biflorus. J Mol Biol 309:193–201PubMedGoogle Scholar
  157. 157.
    Dahlgren K, Porath J, Lindahl-Kiessling K (1970) On the purification of phytohemagglutinins from Phaseolus vulgaris seeds. Arch Biochem Biophys 137:306–314PubMedGoogle Scholar
  158. 158.
    Dupuis G, Leclair B (1982) Studies on Phaseolus vulgaris phytohemagglutinin. Structural requirements for simple sugars to inhibit the agglutination of human group A erythrocytes. FEBS Lett 144:29–32PubMedGoogle Scholar
  159. 159.
    Faye L, Sturm A, Bollini R et al (1986) The position of the oligosaccharide side-chains of phytohemagglutinin and their accessibility to glycosidases determines their subsequent processing in the Golgi. Eur J Biochem 158: 655–661PubMedGoogle Scholar
  160. 160.
    Borberg H, Yesner I, Gesner B, Silber R (1968) The effect of N acetyl C-galactosamine and other sugars on the mitogenic activity and attachment of PHA to tonsil cells. Blood 31:747–757PubMedGoogle Scholar
  161. 161.
    Hoglund S, Dahlgren K (1970) On the morphology of phytohemagglutinin from Phaseolus vulgaris seeds. Eur J Biochem 17:23–26PubMedGoogle Scholar
  162. 162.
    Serafini-Cessi F, Franceschi C, Sperti S (1979) Specific interaction of human Tamm-Horsfall gylcoprotein with leucoagglutinin, a lectin from Phaseolus vulgaris (red kidney bean). Biochem J 183:381–388PubMedPubMedCentralGoogle Scholar
  163. 163.
    Kobayashi Y, Tateno H, Dohra H et al (2012) A novel core fucose-specific lectin from the mushroom Pholiota squarrosa. J Biol Chem 287:33973–33982PubMedPubMedCentralGoogle Scholar
  164. 164.
    Banerjee R, Das K, Ravishankar R et al (1996) Conformation, protein-carbohydrate interactions and a novel subunit association in the refined structure of peanut lectin-lactose complex. J Mol Biol 259:281–296PubMedGoogle Scholar
  165. 165.
    Pereira ME, Kabat EA, Lotan R et al (1976) Immunochemical studies on the specificity of the peanut (Arachis hypogaea) agglutinin. Carbohydr Res 51:107–118PubMedGoogle Scholar
  166. 166.
    Ravishankar R, Suguna K, Surolia A et al (1999) Structures of the complexes of peanut lectin with methyl-beta-galactose and N-acetyllactosamine and a comparative study of carbohydrate binding in Gal/GalNAc-specific legume lectins. Acta Crystallogr D Biol Crystallogr 55:1375–1382PubMedGoogle Scholar
  167. 167.
    Young NM, Johnston RA, Watson DC (1991) The amino acid sequence of peanut agglutinin. Eur J Biochem 196:631–637PubMedGoogle Scholar
  168. 168.
    Higgins TJ, Chandler PM, Zurawski G et al (1983) The biosynthesis and primary structure of pea seed lectin. J Biol Chem 258: 9544–9549PubMedGoogle Scholar
  169. 169.
    Kornfeld K, Reitman ML, Kornfeld R (1981) The carbohydrate-binding specificity of pea and lentil lectins. Fucose is an important determinant. J Biol Chem 256:6633–6640PubMedGoogle Scholar
  170. 170.
    Rini JM, Hardman KD, Einspahr H et al (1993) X-ray crystal structure of a pea lectin-trimannoside complex at 2.6 A resolution. J Biol Chem 268:10126–10132PubMedGoogle Scholar
  171. 171.
    Arigi E, Singh S, Kahlili AH et al (2007) Characterization of neutral and acidic glycosphingolipids from the lectin-producing mushroom, Polyporus squamosus. Glycobiology 17: 754–766PubMedGoogle Scholar
  172. 172.
    Mo H, Winter HC, Goldstein IJ (2000) Purification and characterization of a Neu5A calpha2-6Galbeta1-4Glc/GlcNAc-specific lectin from the fruiting body of the polypore mushroom Polyporus squamosus. J Biol Chem 275:10623–10629Google Scholar
  173. 173.
    Tateno H, Winter HC, Goldstein IJ (2004) Cloning, expression in Escherichia coli and characterization of the recombinant Neu5 Acalpha2,6Galbeta1,4GlcNAc-specific high-affinity lectin and its mutants from the mushroom Polyporus squamosus. Biochem J 382: 667–675Google Scholar
  174. 174.
    Zhang B, Palcic MM, Mo H et al (2001) Rapid determination of the binding affinity and specificity of the mushroom Polyporus squamosus lectin using frontal affinity chromatography coupled to electrospray mass spectrometry. Glycobiology 11:141–147PubMedGoogle Scholar
  175. 175.
    Appukuttan PS, Basu D (1981) Isolation of an N-acetyl-D-galactosamine-binding protein from winged bean (Psophocarpus tetragonolobus). Anal Biochem 113:253–255PubMedGoogle Scholar
  176. 176.
    Kirkeby S, Singha NC, Surolia A (1997) Localized agglutinin staining in muscle capillaries from normal and very old atrophic human muscle using winged bean (Psophocarpus tetragonolobus) lectin. Histochem Cell Biol 107:31–37PubMedGoogle Scholar
  177. 177.
    Kortt AA (1984) Purification and properties of the basic lectins from winged bean seed [Psophocarpus tetragonolobus (L.) DC]. Eur J Biochem 138:519–525PubMedGoogle Scholar
  178. 178.
    Kortt AA (1985) Characterization of the acidic lectins from winged bean seed (Psophocarpus tetragonolobus(L.)DC). Arch Biochem Biophys 236:544–554PubMedGoogle Scholar
  179. 179.
    Matsuda T, Kabat EA, Surolia A (1989) Carbohydrate binding specificity of the basic lectin from winged bean (Psophocarpus tetragonolobus). Mol Immunol 26:189–195PubMedGoogle Scholar
  180. 180.
    Patanjali SR, Sajjan SU, Surolia A (1988) Erythrocyte-binding studies on an acidic lectin from winged bean (Psophocarpus tetragonolobus). Biochem J 252:625–631PubMedPubMedCentralGoogle Scholar
  181. 181.
    Pueppke SG (1979) Purification and characterization of a lectin from seeds of the winged bean, Psophocarpus tetragonolobus (L.)DC. Biochim Biophys Acta 581:63–70PubMedGoogle Scholar
  182. 182.
    Shet MS, Madaiah M (1988) Chemical modification studies on a lectin from winged-bean [Psophocarpus tetragonolobus (L.) DC] tubers. Biochem J 254:351–357PubMedPubMedCentralGoogle Scholar
  183. 183.
    Shet MS, Murugiswamy B, Madaiah M (1985) A lectin from winged bean (Psophocarpus tetragonolobus) tubers. Indian J Biochem Biophys 22:313–315PubMedGoogle Scholar
  184. 184.
    Cioci G, Mitchell EP, Chazalet V et al (2006) Beta-propeller crystal structure of Psathyrella velutina lectin: an integrin-like fungal protein interacting with monosaccharides and calcium. J Mol Biol 357:1575–1591PubMedGoogle Scholar
  185. 185.
    Endo T, Ohbayashi H, Kanazawa K et al (1992) Carbohydrate binding specificity of immobilized Psathyrella velutina lectin. J Biol Chem 267:707–713PubMedGoogle Scholar
  186. 186.
    Kobata A, Kochibe N, Endo T (1994) Affinity chromatography of oligosaccharides on Psathyrella velutina lectin column. Methods Enzymol 247:228–237PubMedGoogle Scholar
  187. 187.
    Kochibe N, Matta KL (1989) Purification and properties of an N-acetylglucosamine-specific lectin from Psathyrella velutina mushroom. J Biol Chem 264:173–177PubMedGoogle Scholar
  188. 188.
    Ueda H, Kojima K, Saitoh T et al (1999) Interaction of a lectin from Psathyrella velutina mushroom with N-acetylneuraminic acid. FEBS Lett 448:75–80PubMedGoogle Scholar
  189. 189.
    Ueda H, Takahashi N, Ogawa H (2003) Psathyrella velutina lectin as a specific probe for N-acetylneuraminic acid in glycoconjugates. Methods Enzymol 363:77–90PubMedGoogle Scholar
  190. 190.
    Farnes P, Barker BE, Brownhill LE et al (1964) Mitogenic activity in Phytolacca americana (Pokeweed). Lancet 2:1100–1101PubMedGoogle Scholar
  191. 191.
    Fujii T, Hayashida M, Hamasu M et al (2004) Structures of two lectins from the roots of pokeweed (Phytolacca americana). Acta Crystallogr D Biol Crystallogr 60:665–673PubMedGoogle Scholar
  192. 192.
    Hayashida M, Fujii T, Hamasu M et al (2003) Crystallization and preliminary X-ray analysis of lectin C from the roots of pokeweed (Phytolacca americana). Acta Crystallogr D Biol Crystallogr 59:1249–1252PubMedGoogle Scholar
  193. 193.
    Hayashida M, Fujii T, Hamasu M et al (2003) Similarity between protein-protein and protein-carbohydrate interactions, revealed by two crystal structures of lectins from the roots of pokeweed. J Mol Biol 334:551–565PubMedGoogle Scholar
  194. 194.
    Kino M, Yamaguchi K, Umekawa H et al (1995) Purification and characterization of three mitogenic lectins from the roots of pokeweed (Phytolacca americana). Biosci Biotechnol Biochem 59:683–688PubMedGoogle Scholar
  195. 195.
    Reisfeld RA, Borjeson J, Chessin LN et al (1967) Isolation and characterization of a mitogen from pokeweek (Phytolacca americana). Proc Natl Acad Sci U S A 58:2020–2027PubMedPubMedCentralGoogle Scholar
  196. 196.
    Yokoyama K, Terao T, Osawa T (1978) Carbohydrate-binding specificity of pokeweed mitogens. Biochim Biophys Acta 538: 384–396PubMedGoogle Scholar
  197. 197.
    Olsnes S, Pappenheimer AM Jr, Meren R (1974) Lectins from Abrus precatorius and Ricinus communis. II Hybrid toxins and their interaction with chain-specific antibodies. J Immunol 113:842–847Google Scholar
  198. 198.
    Olsnes S, Refsnes K, Pihl A (1974) Mechanism of action of the toxic lectins abrin and ricin. Nature 249:627–631PubMedGoogle Scholar
  199. 199.
    Olsnes S, Saltvedt E, Pihl A (1974) Isolation and comparison of galactose-binding lectins from Abrus precatorius and Ricinus communis. J Biol Chem 249:803–810PubMedGoogle Scholar
  200. 200.
    Pappenheimer AM Jr, Olsnes S, Harper AA (1974) Lectins from Abrus precatorius and Ricinus communis. I. Immunochemical relationships between toxins and agglutinins. J Immunol 113:835–841PubMedGoogle Scholar
  201. 201.
    Saltvedt E (1976) Structure and toxicity of pure ricinus agglutinin. Biochim Biophys Acta 451:536–548PubMedGoogle Scholar
  202. 202.
    Yamamoto T, Iwasaki Y, Konno H et al (1985) Primary degeneration of motor neurons by toxic lectins conveyed from the peripheral nerve. J Neurol Sci 70:327–337PubMedGoogle Scholar
  203. 203.
    Kostlanova N, Mitchell EP, Lortat-Jacob H et al (2005) The fucose-binding lectin from Ralstonia solanacearum. A new type of beta-propeller architecture formed by oligomerization and interacting with fucoside, fucosyllactose, and plant xyloglucan. J Biol Chem 280:27839–27849PubMedGoogle Scholar
  204. 204.
    Sudakevitz D, Imberty A, Gilboa-Garber N (2002) Production, properties and specificity of a new bacterial L-fucose- and D-arabinose-binding lectin of the plant aggressive pathogen Ralstonia solanacearum, and its comparison to related plant and microbial lectins. J Biochem 132:353–358PubMedGoogle Scholar
  205. 205.
    Sudakevitz D, Kostlanova N, Blatman-Jan G et al (2004) A new Ralstonia solanacearum high-affinity mannose-binding lectin RS-IIL structurally resembling the Pseudomonas aeruginosa fucose-specific lectin PA-IIL. Mol Microbiol 52:691–700PubMedGoogle Scholar
  206. 206.
    Dorland L, van Halbeek H, Vleigenthart JF et al (1981) Primary structure of the carbohydrate chain of soybean agglutinin. A reinvestigation by high resolution 1H NMR spectroscopy. J Biol Chem 256:7708–7711PubMedGoogle Scholar
  207. 207.
    Galbraith W, Goldstein IJ (1970) Phytohemagglutinins: a new class of metalloproteins. Isolation, purification, and some properties of the lectin from Phaseolus lunatus. FEBS Lett 9:197–201PubMedGoogle Scholar
  208. 208.
    Jaffe CL, Ehrlich-Rogozinski S, Lis H et al (1977) Transition metal requirements of soybean agglutin. FEBS Lett 82:191–196PubMedGoogle Scholar
  209. 209.
    Lis H, Sharon N (1978) Soybean agglutinin–a plant glycoprotein. Structure of the carboxydrate unit. J Biol Chem 253:3468–3476PubMedGoogle Scholar
  210. 210.
    Vodkin LO, Rhodes PR, Goldberg RB (1983) cA lectin gene insertion has the structural features of a transposable element. Cell 34: 1023–1031PubMedGoogle Scholar
  211. 211.
    Broekaert WF, Nsimba-Lubaki M, Peeters B et al (1984) A lectin from elder (Sambucus nigra L.) bark. Biochem J 221:163–169PubMedPubMedCentralGoogle Scholar
  212. 212.
    Roth J, Taatjes DJ, Weinstein J et al (1986) Differential subcompartmentation of terminal glycosylation in the Golgi apparatus of intestinal absorptive and goblet cells. J Biol Chem 261:14307–14312PubMedGoogle Scholar
  213. 213.
    Shibuya N, Goldstein IJ, Broekaert WF et al (1987) The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac(alpha 2-6)Gal/GalNAc sequence. J Biol Chem 262: 1596–1601PubMedGoogle Scholar
  214. 214.
    Shibuya N, Goldstein IJ, Broekaert WF et al (1987) Fractionation of sialylated oligosaccharides, glycopeptides, and glycoproteins on immobilized elderberry (Sambucus nigra L.) bark lectin. Arch Biochem Biophys 254:1–8PubMedGoogle Scholar
  215. 215.
    Kaku H, Tanaka Y, Tazaki K et al (1996) Sialylated oligosaccharide-specific plant lectin from Japanese elderberry (Sambucus sieboldiana) bark tissue has a homologous structure to type II ribosome-inactivating proteins, ricin and abrin. cDNA cloning and molecular modeling study. J Biol Chem 271:1480–1485PubMedGoogle Scholar
  216. 216.
    Shibuya N, Tazaki K, Song ZW et al (1989) A comparative study of bark lectins from three elderberry (Sambucus) species. J Biochem 106:1098–1103PubMedGoogle Scholar
  217. 217.
    Ashford D, Allen AK, Neuberger A (1982) The production and properties of an antiserum to potato (Solanum tuberosum) lectin. Biochem J 201:641–645PubMedPubMedCentralGoogle Scholar
  218. 218.
    Ashford D, Desai NN, Allen AK et al (1982) Structural studies of the carbohydrate moieties of lectins from potato (Solanum tuberosum) tubers and thorn-apple (Datura stramonium) seeds. Biochem J 201:199–208PubMedPubMedCentralGoogle Scholar
  219. 219.
    Doi A, Matsumoto I, Seno N (1983) Fluorescence spectral studies on the specific interaction between sulfated glycosaminoglycans and potato lectin. J Biochem 93: 771–775PubMedGoogle Scholar
  220. 220.
    Kawashima H, Sueyoshi S, Li H et al (1990) Carbohydrate binding specificities of several poly-N-acetyllactosamine-binding lectins. Glycoconj J 7:323–334PubMedGoogle Scholar
  221. 221.
    Fukushima K, Hada T, Higashino K et al (1998) Elevated serum levels of Trichosanthes japonica agglutinin-I binding alkaline phosphatase in relation to high-risk groups for hepatocellular carcinomas. Clin Cancer Res 4:2771–2777PubMedGoogle Scholar
  222. 222.
    Yamashita K, Fukushima K, Sakiyama T et al (1995) Expression of Sia alpha 2→6Gal beta 1→4GlcNAc residues on sugar chains of glycoproteins including carcinoembryonic antigens in human colon adenocarcinoma: applications of Trichosanthes japonica agglutinin I for early diagnosis. Cancer Res 55: 1675–1679Google Scholar
  223. 223.
    Yamashita K, Ohkura T, Umetsu K et al (1992) Purification and characterization of a Fuc alpha 1→2Gal beta 1→and GalNAc beta 1→-specific lectin in root tubers of Trichosanthes japonica. J Biol Chem 267: 25414–25422Google Scholar
  224. 224.
    Yamashita K, Umetsu K, Suzuki T et al (1992) Purification and characterization of a Neu5Ac alpha 2→6Gal beta 1→4GlcNAc and HSO3 (-)→6Gal beta 1→GlcNAc specific lectin in tuberous roots of Trichosanthes japonica. Biochemistry 31:11647–11650Google Scholar
  225. 225.
    Yoshikawa K, Umetsu K, Shinzawa H et al (1999) Determination of carbohydrate-deficient transferrin separated by lectin affinity chromatography for detecting chronic alcohol abuse. FEBS Lett 458:112–116Google Scholar
  226. 226.
    Cammue BP, Peeters B, Peumans WJ (1986) A new lectin from tulip (Tulipa) bulbs. Planta 169:583–588PubMedGoogle Scholar
  227. 227.
    Oda Y, Ichida S, Aonuma S et al (1989) Studies on chemical modification of Tulipa gesneriana lectin. Chem Pharm Bull (Tokyo) 37:2170–2173Google Scholar
  228. 228.
    Oda Y, Minami K (1986) Isolation and characterization of a lectin from tulip bulbs, Tulipa gesneriana. Eur J Biochem 159: 239–245PubMedGoogle Scholar
  229. 229.
    Oda Y, Minami K, Ichida S et al (1987) A new agglutinin from the Tulipa gesneriana bulbs. Eur J Biochem 165:297–302PubMedGoogle Scholar
  230. 230.
    Van Damme EJ, Brike F, Winter HC et al (1996) Molecular cloning of two different mannose-binding lectins from tulip bulbs. Eur J Biochem 236:419–427PubMedGoogle Scholar
  231. 231.
    Van Damme EJ, Peumans WJ (1989) Developmental changes and tissue distribution of lectin in Tulipa. Planta 178:10–18PubMedGoogle Scholar
  232. 232.
    Beintema JJ, Peumans WJ (1992) The primary structure of stinging nettle (Urtica dioica) agglutinin. A two-domain member of the hevein family. FEBS Lett 299:131–134PubMedGoogle Scholar
  233. 233.
    Le Moal MA, Truffa-Bachi P (1988) Urtica dioica agglutinin, a new mitogen for murine T lymphocytes: unaltered interleukin-1 production but late interleukin 2-mediated proliferation. Cell Immunol 115:24–35PubMedGoogle Scholar
  234. 234.
    Shibuya N, Goldstein IJ, Shafer JA et al (1986) Carbohydrate binding properties of the stinging nettle (Urtica dioica) rhizome lectin. Arch Biochem Biophys 249:215–224PubMedGoogle Scholar
  235. 235.
    Kurimura Y, Tsuji Y, Yamamoto K et al (1995) Efficient production and purification of extracellular 1,2-alpha-L-fucosidase of Bacillus sp. K40T. Biosci Biotechnol Biochem 59: 589–594Google Scholar
  236. 236.
    Matsumoto I, Osawa T (1969) Purification and characterization of an anti-H(O) phytohemagglutinin of Ulex europeus. Biochim Biophys Acta 194:180–189PubMedGoogle Scholar
  237. 237.
    Bausch SB, Chavkin C (1996) Vicia villosa agglutinin labels a subset of neurons coexpressing both the mu opioid receptor and parvalbumin in the developing rat subiculum. Brain Res Dev Brain Res 97:169–177PubMedGoogle Scholar
  238. 238.
    Ervasti JM, Burwell AL, Geissler AL (1997) Tissue-specific heterogeneity in alpha-dystroglycan sialoglycosylation. Skeletal muscle alpha-dystroglycan is a latent receptor for Vicia villosa agglutinin b4 masked by sialic acid modification. J Biol Chem 272: 22315–22321PubMedGoogle Scholar
  239. 239.
    Grubhoffer L, Ticha M, Kocourek J (1981) Isolation and properties of a lectin from the seeds of hairy vetch (Vicia villosa Roth). Biochem J 195:623–626PubMedPubMedCentralGoogle Scholar
  240. 240.
    Kimura A, Wigzell H, Holmquist G et al (1979) Selective affinity fractionation of murine cytotoxic T lymphocytes (CTL). Unique lectin specific binding of the CTL associated surface glycoprotein, T 145. J Exp Med 149:473–484PubMedGoogle Scholar
  241. 241.
    Murakami T, Ohtsuka A, Ono K (1996) Neurons with perineuronal sulfated proteoglycans in the mouse brain and spinal cord: their distribution and reactions to lectin Vicia villosa agglutinin and Golgi’s silver nitrate. Arch Histol Cytol 59:219–231PubMedGoogle Scholar
  242. 242.
    Kurokawa T, Tsuda M, Sugino Y (1976) Purification and characterization of a lectin from Wistaria floribunda seeds. J Biol Chem 251:5686–5693PubMedGoogle Scholar
  243. 243.
    Torres BV, McCrumb DK, Smith DF (1988) Glycolipid-lectin interactions: reactivity of lectins from Helix pomatia, Wisteria floribunda, and Dolichos biflorus with glycolipids containing N-acetylgalactosamine. Arch Biochem Biophys 262:1–11PubMedGoogle Scholar
  244. 244.
    Toyoshima S, Akiyama Y, Nakano K et al (1971) A phytomitogen from Wistaria floribunda seeds and its interaction with human peripheral lymphocytes. Biochemistry 10: 4457–4463Google Scholar
  245. 245.
    Kronis KA, Carver JP (1982) Specificity of isolectins of wheat germ agglutinin for sialyloligosaccharides: a 360-MHz proton nuclear magnetic resonance binding study. Biochemistry 21:3050–3057PubMedGoogle Scholar
  246. 246.
    Matsumoto I, Koyama T, Kitagaki-Ogawa H et al (1987) Separation of isolectins by high-performance hydrophobic interaction chromatography. J Chromatogr 400:77–81PubMedGoogle Scholar
  247. 247.
    Nagata Y, Burger MM (1974) Wheat germ agglutinin. Molecular characteristics and specificity for sugar binding. J Biol Chem 249:3116–3122PubMedGoogle Scholar
  248. 248.
    Nagata Y, Goldberg AR, Burger MM (1974) The isolation and purification of wheat germ and other agglutinins. Methods Enzymol 32: 611–615PubMedGoogle Scholar
  249. 249.
    Wright CS, Keith C, Langridge R et al (1974) A preliminary crystallographic study of wheat germ agglutinin. J Mol Biol 87: 843–846PubMedGoogle Scholar
  250. 250.
    Yamamoto K, Tsuji T, Matsumoto I et al (1981) Structural requirements for the binding of oligosaccharides and glycopeptides to immobilized wheat germ agglutinin. Biochemistry 20:5894–5899PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yuka Kobayashi
    • 1
    Email author
  • Hiroaki Tateno
    • 2
  • Haruko Ogawa
    • 3
  • Kazuo Yamamoto
    • 4
  • Jun Hirabayashi
    • 2
  1. 1.J-Oil Mills, Inc.YokohamaJapan
  2. 2.Research Center for Stem Cell EngineeringNational Institute of Advance Industrial Science and TechnologyTsukubaJapan
  3. 3.Graduate School of Humanities and Sciences and Glycoscience InstituteOchanomizu UniversityBunkyo-kuJapan
  4. 4.Graduate School of Frontier SciencesThe University of TokyoKashiwaJapan

Personalised recommendations