Advertisement

Lectins pp 225-242 | Cite as

Lectin-Based Glycomics: How and When Was the Technology Born?

  • Jun HirabayashiEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1200)

Abstract

Lectin-based glycomics is an emerging, comprehensive technology in the post-genome sciences. The technique utilizes a panel of lectins, which is a group of biomolecules capable of deciphering “glycocodes,” with a novel platform represented by a lectin microarray. The method enables multiple glycan–lectin interaction analyses to be made so that differential glycan profiling can be performed in a rapid and sensitive manner. This approach is in clear contrast to another advanced technology, mass spectrometry, which requires prior glycan liberation. Although the lectin microarray cannot provide definitive structures of carbohydrates and their attachment sites, it gives useful clues concerning the characteristic features of glycoconjugates. These include differences not only in terminal modifications (e.g., sialic acid (Sia) linkage, types of fucosylation) but also in higher ordered structures in terms of glycan density, depth, and direction composed for both N- and O-glycans. However, before this technique began to be implemented in earnest, many other low-throughput methods were utilized in the late twentieth century. In this chapter, the author describes how the current lectin microarray technique has developed based on his personal experience.

Key words

Lectin-based glycomics Frontal affinity chromatography Lectin microarray Dissociation constant Evanescent-field-activated fluorescence detection Proteomics 

References

  1. 1.
    Bertozzi CR, Sasisekharan R (2009) Glycomics. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, Chapter 48Google Scholar
  2. 2.
    Feizi T (2000) Progress in deciphering the information content of the 'glycome' – a crescendo in the closing years of the millennium. Glycoconj J 17:553–565PubMedCrossRefGoogle Scholar
  3. 3.
    Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams KL, Humphery-Smith I (1995) Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 16:1090–1094PubMedCrossRefGoogle Scholar
  4. 4.
    Hirabayashi J, Kasai K (1999) C. elegans glycome project. Glycoconj J 16:S33. In XV international symposium on glycoconjugates: abstracts, 22–27 Aug 1999, Tokyo, Japan. Chapman & Hall, LondonGoogle Scholar
  5. 5.
    Hirabayashi J, Arata Y, Kasai K (2001) Glycome project: concept, strategy and preliminary application to Caenorhabditis elegans. Proteomics 1:295–303PubMedCrossRefGoogle Scholar
  6. 6.
    Taniguchi N, Ekuni A, Ko JH, Miyoshi E, Ikeda Y, Ihara Y, Nishikawa A, Honke K, Takahashi M (2001) Proteomics 1:239–247PubMedCrossRefGoogle Scholar
  7. 7.
    The C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018CrossRefGoogle Scholar
  8. 8.
    Hirabayashi J, Kasai K (2000) Glycomics, coming of age! Trends Glycosci Glycotechnol 12:1–5CrossRefGoogle Scholar
  9. 9.
    Kasai K, Hirabayashi J (1996) Galectins: a family of animal lectins that decipher glycocodes. J Biochem 119:1–8PubMedCrossRefGoogle Scholar
  10. 10.
    Kasai K (1997) Galectin: intelligent glue, non-bureaucratic bureaucrat or almighty supporting actor. Trends Glycosci Glycotechnol 9: 167–170CrossRefGoogle Scholar
  11. 11.
    Gabius H-J (2000) Biological information transfer beyond the genetic code: the sugar code. Naturwissenschaften 87:108–121PubMedCrossRefGoogle Scholar
  12. 12.
    Rüdiger H, Siebert HC, Solís D, Jiménez-Barbero J, Romero A, von der Lieth CW, Diaz-Mariño T, Gabius H-J (2000) Medicinal chemistry based on the sugar code: fundamentals of lectinology and experimental strategies with lectins as targets. Curr Med Chem 7: 389–416PubMedCrossRefGoogle Scholar
  13. 13.
    Lis H, Sharon N (2007) Lectins, 2nd edn. Springer, DordrechtGoogle Scholar
  14. 14.
    Natsuka S, Adachi J, Kawaguchi M, Nakakita S, Hase S, Ichikawa A, Ikura K (2002) Structural analysis of N-linked glycans in Caenorhabditis elegans. J Biochem 131:807–813PubMedCrossRefGoogle Scholar
  15. 15.
    Cipollo JF, Costello CE, Hirschberg CB (2002) The fine structure of Caenorhabditis elegans N-glycans. J Biol Chem 277: 49143–49157PubMedCrossRefGoogle Scholar
  16. 16.
    Hirabayashi J, Hayama K, Kaji H, Isobe T, Kasai K (2002) Affinity capturing and gene assignment of soluble glycoproteins produced by the nematode Caenorhabditis elegans. J Biochem 132:103–114PubMedCrossRefGoogle Scholar
  17. 17.
    Takeuchi T, Hayama K, Hirabayashi J, Kasai K (2008) Caenorhabditis elegans N-glycans containing a Gal-Fuc disaccharide unit linked to the innermost GlcNAc residue are recognized by C. elegans galectin LEC-6. Glycobiology 18:882–890PubMedCrossRefGoogle Scholar
  18. 18.
    Titz A, Butschi A, Henrissat B, Fan YY, Hennet T, Razzazi-Fazeli E, Hengartner MO, Wilson IB, Künzler M, Aebi M (2009) Molecular basis for galactosylation of core fucose residues in invertebrates: identification of Caenorhabditis elegans N-glycan core alpha1,6-fucoside beta1,4-galactosyltransferase GALT-1 as a member of a novel glycosyltransferase family. J Biol Chem 284:36223–36233PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Hirabayashi J, Arata Y, Kasai K (2000) Reinforcement of frontal affinity chromatography for effective analysis of lectin–oligosaccharide interactions. J Chromatogr A 890:261–271PubMedCrossRefGoogle Scholar
  20. 20.
    Arata Y, Hirabayashi J, Kasai K (2001) Application of reinforced frontal affinity chromatography and advanced processing procedure to the study of the binding property of a Caenorhabditis elegans galectin. J Chromatogr A 905:337–343PubMedCrossRefGoogle Scholar
  21. 21.
    Hirabayashi J, Arata Y, Kasai K (2003) Frontal affinity chromatography as a tool for elucidation of sugar recognition properties of lectins. Methods Enzymol 362:353–368PubMedCrossRefGoogle Scholar
  22. 22.
    Hirabayashi J, Hashidate T, Kasai K (2002) Glyco-catch method: a lectin affinity technique for glycoproteomics. J Biomol Tech 13: 205–218PubMedPubMedCentralGoogle Scholar
  23. 23.
    Hirabayashi J (2004) Lectin-based structural glycomics: glycoproteomics and glycan profiling. Glycoconj J 21:35–40PubMedCrossRefGoogle Scholar
  24. 24.
    Mawuenyega KG, Kaji H, Yamuchi Y, Shinkawa T, Saito H, Taoka M, Takahashi N, Isobe T (2003) Large-scale identification of Caenorhabditis elegans proteins by multidimensional liquid chromatography-tandem mass spectrometry. J Proteome Res 2:23–35PubMedCrossRefGoogle Scholar
  25. 25.
    Kaji H, Saito H, Yamauchi Y, Shinkawa T, Taoka M, Hirabayashi J, Kasai K, Takahashi N, Isobe T (2003) Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat Biotechnol 21:667–672PubMedCrossRefGoogle Scholar
  26. 26.
    Kaji H, Isobe T (2013) Stable isotope labeling of N-glycosylated peptides by enzymatic deglycosylation for mass spectrometry-based glycoproteomics. Methods Mol Biol 951:217–227PubMedCrossRefGoogle Scholar
  27. 27.
    Blixt O, Head S, Mondala T, Scanlan C, Huflejt ME, Alvarez R, Bryan MC, Fazio F, Calarese D, Stevens J, Razi N, Stevens DJ, Skehel JJ, van Die I, Burton DR, Wilson IA, Cummings R, Bovin N, Wong CH, Paulson JC (2004) Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc Natl Acad Sci U S A 101:17033–17038PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Paulson JC, Blixt O, Collins BE (2006) Sweet spots in functional glycomics. Nat Chem Biol 2:238–248PubMedCrossRefGoogle Scholar
  29. 29.
    Blixt O, Razi N (2006) Chemoenzymatic synthesis of glycan libraries. Methods Enzymol 415:137–153PubMedCrossRefGoogle Scholar
  30. 30.
    Laine RA (1994) A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 x 10(12) structures for a reducing hexasaccharide: the isomer barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology 4:759–767CrossRefGoogle Scholar
  31. 31.
    Crick F (1970) Central dogma of molecular biology. Nature 227:561–563PubMedCrossRefGoogle Scholar
  32. 32.
    Narimatsu H, Sawaki H, Kuno A, Kaji H, Ito H, Ikehara Y (2010) A strategy for discovery of cancer glyco-biomarkers in serum using newly developed technologies for glycoproteomics. FEBS J 277:95–105PubMedCrossRefGoogle Scholar
  33. 33.
    Wells L, Vosseller K, Hart GW (2001) Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 291:2376–2378PubMedCrossRefGoogle Scholar
  34. 34.
    Zareim M, Müthingm J, Peter-Katalinić J, Bindila L (2010) Separation and identification of GM1b pathway Neu5Ac- and Neu5Gc gangliosides by on-line nanoHPLC-QToF MS and tandem MS: toward glycolipidomics screening of animal cell lines. Glycobiology 20:118–126CrossRefGoogle Scholar
  35. 35.
    Taki T (2012) An approach to glycobiology from glycolipidomics: ganglioside molecular scanning in the brains of patients with Alzheimer's disease by TLC-blot/matrix assisted laser desorption/ionization-time of flight MS. Biol Pharm Bull 35:1642–1647PubMedCrossRefGoogle Scholar
  36. 36.
    Zamfir A, Seidler DG, Schönherr E, Kresse H, Peter-Katalinić J (2004) On-line sheathless capillary electrophoresis/nanoelectrospray ionization-tandem mass spectrometry for the analysis of glycosaminoglycan oligosaccharides. Electrophoresis 25:2010–2016PubMedCrossRefGoogle Scholar
  37. 37.
    Minamisawa T, Suzuki K, Hirabayashi J (2006) Multistage mass spectrometric sequencing of keratan sulfate-related oligosaccharides. Anal Chem 78:891–900PubMedCrossRefGoogle Scholar
  38. 38.
    Takegawa Y, Araki K, Fujitani N, Furukawa J, Sugiyama H, Sakai H, Shinohara Y (2011) Simultaneous analysis of heparan sulfate, chondroitin/dermatan sulfates, and hyaluronan disaccharides by glycoblotting-assisted sample preparation followed by single-step zwitter-ionic-hydrophilic interaction chromatography. Anal Chem 83:9443–9449PubMedCrossRefGoogle Scholar
  39. 39.
    Angeloni S, Ridet JL, Kusy N, Gao H, Crevoisier F, Guinchard S, Kochhar S, Sigrist H, Sprenger N (2005) Glycoprofiling with micro-arrays of glycoconjugates and lectins. Glycobiology 15:31–41PubMedCrossRefGoogle Scholar
  40. 40.
    Pilobello KT, Krishnamoorthy L, Slawek D, Mahal LK (2005) Development of a lectin microarray for the rapid analysis of protein glycopatterns. Chembiochem 6:985–989PubMedCrossRefGoogle Scholar
  41. 41.
    Zheng T, Peelen D, Smith LM (2005) Lectin arrays for profiling cell surface carbohydrate expression. J Am Chem Soc 127:9982–9983PubMedCrossRefGoogle Scholar
  42. 42.
    Kuno A, Uchiyama N, Koseki-Kuno S, Ebe Y, Takashima S, Yamada M, Hirabayashi J (2005) Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nat Methods 2: 851–856PubMedCrossRefGoogle Scholar
  43. 43.
    Ohyama Y, Kasai K, Nomoto H, Inoue Y (1985) Frontal affinity chromatography of ovalbumin glycoasparagines on a concanavalin A-sepharose column. A quantitative study of the binding specificity of the lectin. J Biol Chem 260:6882–6887PubMedGoogle Scholar
  44. 44.
    Ng ES, Chan NW, Lewis DF, Hindsgaul O, Schriemer DC (2007) Frontal affinity chromatography-mass spectrometry. Nat Protoc 2: 1907–1917PubMedCrossRefGoogle Scholar
  45. 45.
    Tateno H, Nakamura-Tsuruta S, Hirabayashi J (2007) Frontal affinity chromatography: sugar–protein interactions. Nat Protoc 2:2529–2537PubMedCrossRefGoogle Scholar
  46. 46.
    Hirabayashi J, Hashidate T, Arata Y, Nishi N, Nakamura T, Hirashima M, Urashima T, Oka T, Futai M, Muller WE, Yagi F, Kasai K (2002) Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim Biophys Acta 1572:232–254PubMedCrossRefGoogle Scholar
  47. 47.
    Kamiya Y, Kamiya D, Yamamoto K, Nyfeler B, Hauri HP, Kato K (2008) Molecular basis of sugar recognition by the human L-type lectins ERGIC-53, VIPL, and VIP36. J Biol Chem 283:1857–1861PubMedCrossRefGoogle Scholar
  48. 48.
    Fujii Y, Kawsar SM, Matsumoto R, Yasumitsu H, Ishizaki N, Dogasaki C, Hosono M, Nitta K, Hamako J, Taei M, Ozeki Y (2011) A D-galactose-binding lectin purified from coronate moon turban, Turbo (Lunella) coreensis, with a unique amino acid sequence and the ability to recognize lacto-series glycosphingolipids. Comp Biochem Physiol B Biochem Mol Biol 158:30–37PubMedCrossRefGoogle Scholar
  49. 49.
    Isomura R, Kitajima K, Sato C (2011) Structural and functional impairments of polysialic acid by a mutated polysialyltransferase found in schizophrenia. J Biol Chem 286: 21535–21545PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Watanabe M, Nakamura O, Muramoto K, Ogawa T (2012) Allosteric regulation of the carbohydrate-binding ability of a novel conger eel galectin by D-mannoside. J Biol Chem 287:31061–31072PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Smith DF, Cummings RD (2013) Application of microarrays for deciphering the structure and function of the human glycome. Mol Cell Proteomics 12:902–912PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Hirabayashi J, Yamada M, Kuno A, Tateno H (2013) Lectin microarrays: concept, principle and applications. Chem Soc Rev 42:4443–4458PubMedCrossRefGoogle Scholar
  53. 53.
    Hirabayashi J (1996) On the origin of elementary hexoses. Q Rev Biol 71:365–380PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Research Center for Stem Cell EngineeringNational Institute of Advance Industrial Science and Technology (AIST)TsukubaJapan

Personalised recommendations