Drosophila as a Model for Intestinal Infections

  • Matthieu Lestradet
  • Kwang-Zin Lee
  • Dominique FerrandonEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1197)


Drosophila melanogaster is a powerful model to study infections thanks to the power of its genetics and knowledge on its biology accumulated for over a century. While the systemic humoral immune response against invading microbes has been intensively studied in the past two decades, the study of intestinal infections is more recent. Here, we present the methods that are currently in use to probe various aspects of the host-pathogen interactions between Drosophila and ingested microbes, with an emphasis on the study of the midgut epithelium, which constitutes the major interface between the organism and the microbe-rich ingested food.

Key words

Drosophila melanogaster Innate immunity Host-pathogen interactions Resilience/tolerance Intestinal stem cells Enterocyte Phagocytosis Serratia marcescens Pseudomonas aeruginosa Intestinal homeostasis 



We acknowledge the expert technical help from Mme Marie-Céline Lacombe and thank Mme Samantha Haller for advice. Work in the author’s laboratory has been funded by CNRS, ANR (DROSELEGANS, DROSOGUT, KANJI), Fondation Simone et Cino Del Duca, and Fondation pour la Recherche Médicale (Equipe FRM).


  1. 1.
    Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489(7415):220–230PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Clevers H (2013) Stem cells: a unifying theory for the crypt. Nature 495(7439):53–54PubMedCrossRefGoogle Scholar
  3. 3.
    Bellen HJ, Tong C, Tsuda H (2010) 100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future. Nat Rev Neurosci 11(7):514–522PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Ferrandon D (2013) The complementary facets of epithelial host defenses in the genetic model organism Drosophila melanogaster: from resistance to resilience. Curr Opin Immunol 25(1):59–70PubMedCrossRefGoogle Scholar
  5. 5.
    Limmer S, Quintin J, Hetru C, Ferrandon D (2011) Virulence on the fly: Drosophila melanogaster as a model genetic organism to decipher host-pathogen interactions. Curr Drug Targets 12(7):978–999PubMedCrossRefGoogle Scholar
  6. 6.
    Bae YS, Choi MK, Lee WJ (2010) Dual oxidase in mucosal immunity and host-microbe homeostasis. Trends Immunol 31(7):278–287PubMedCrossRefGoogle Scholar
  7. 7.
    Nehme NT, Liegeois S, Kele B, Giammarinaro P, Pradel E, Hoffmann JA, Ewbank JJ, Ferrandon D (2007) A Model of Bacterial Intestinal Infections in Drosophila melanogaster. PLoS Pathog 3(11):e173PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Limmer S, Haller S, Drenkard E, Lee J, Yu S, Kocks C, Ausubel FM, Ferrandon D (2011) Pseudomonas aeruginosa RhlR is required to neutralize the cellular immune response in a Drosophila melanogaster oral infection model. Proc Natl Acad Sci U S A 108(42):17378–17383PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Jiang H, Edgar BA (2012) Intestinal stem cell function in Drosophila and mice. Curr Opin Genet Dev 22(4):354–360PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Buchon N, Broderick NA, Kuraishi T, Lemaitre B (2010) Drosophila EGFR pathway coordinates stem cell proliferation and gut remodeling following infection. BMC Biol 8:152PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Ashburner M (1989) Drosophila, a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  12. 12.
    Ashburner M, Golic KG, Hawley RS (2005) Drosophila. A laboratory handbook, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  13. 13.
    Greenspan R (2004) Fly pushing: the theory and practice of Drosophila genetics, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  14. 14.
    Cronin SJ, Nehme NT, Limmer S, Liegeois S, Pospisilik JA, Schramek D, Leibbrandt A, Simoes Rde M, Gruber S, Puc U, Ebersberger I, Zoranovic T, Neely GG, von Haeseler A, Ferrandon D, Penninger JM (2009) Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection. Science 325(5938):340–343PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Quintin J, Asmar J, Matskevich AA, Lafarge MC, Ferrandon D (2013) The Drosophila toll pathway controls but does not clear Candida glabrata infections. J Immunol 190(6):2818–2827PubMedCrossRefGoogle Scholar
  16. 16.
    Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118(2):401–415PubMedGoogle Scholar
  17. 17.
    Glittenberg MT, Kounatidis I, Christensen D, Kostov M, Kimber S, Roberts I, Ligoxygakis P (2011) Pathogen and host factors are needed to provoke a systemic host response to gastrointestinal infection of Drosophila larvae by Candida albicans. Dis Model Mech 4(4):515–525PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Rera M, Bahadorani S, Cho J, Koehler CL, Ulgherait M, Hur JH, Ansari WS, Lo T Jr, Jones DL, Walker DW (2011) Modulation of longevity and tissue homeostasis by the Drosophila PGC-1 homolog. Cell Metab 14(5):623–634PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Chakrabarti S, Liehl P, Buchon N, Lemaitre B (2012) Infection-induced host translational blockage inhibits immune responses and epithelial renewal in the Drosophila gut. Cell Host Microbe 12(1):60–70PubMedCrossRefGoogle Scholar
  20. 20.
    Dieterich DC, Link AJ, Graumann J, Tirrell DA, Schuman EM (2006) Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc Natl Acad Sci U S A 103(25):9482–9487PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Haller S, Limmer S, Ferrandon D (2013) Assessing Pseudomonas virulence with a nonmammalian host: Drosophila melanogaster. In: Filloux A, Ramos JL (eds) Pseudomonas aeruginosa: methods and protocols, Methods in molecular biology. Humana Press, New York, NYGoogle Scholar
  22. 22.
    Singh SR, Mishra MK, Kango-Singh M, Hou SX (2012) Generation and staining of intestinal stem cell lineage in adult midgut. Methods Mol Biol 879:47–69PubMedCrossRefGoogle Scholar
  23. 23.
    McGuire SE, Mao Z, Davis RL (2004) Spatiotemporal gene expression targeting with the TARGET and gene-switch systems in Drosophila. Sci STKE 2004(220):pl6PubMedGoogle Scholar
  24. 24.
    Buchon N, Broderick NA, Chakrabarti S, Lemaitre B (2009) Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev 23(19):2333–2344PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Ha EM, Oh CT, Ryu JH, Bae YS, Kang SW, Jang IH, Brey PT, Lee WJ (2005) An antioxidant system required for host protection against gut infection in Drosophila. Dev Cell 8(1):125–132PubMedCrossRefGoogle Scholar
  26. 26.
    Apidianakis Y, Pitsouli C, Perrimon N, Rahme L (2009) Synergy between bacterial infection and genetic predisposition in intestinal dysplasia. Proc Natl Acad Sci U S A 106:20883–20888PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Hoffmann D (1976) Role of phagocytosis and soluble antibacterial factors in experimental immunization of Locusta migratoria. C R Acad Sci Hebd Seances Acad Sci D 282(10):1021–1024PubMedGoogle Scholar
  28. 28.
    Elrod-Erickson M, Mishra S, Schneider D (2000) Interactions between the cellular and humoral immune responses in Drosophila. Curr Biol 10(13):781–784PubMedCrossRefGoogle Scholar
  29. 29.
    Rutschmann S, Kilinc A, Ferrandon D (2002) The Toll pathway is required for resistance to Gram-positive bacterial infections in Drosophila. J Immunol 168:1542–1546PubMedCrossRefGoogle Scholar
  30. 30.
    O’Brien LE, Soliman SS, Li X, Bilder D (2011) Altered modes of stem cell division drive adaptive intestinal growth. Cell 147(3):603–614PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Broderick NA, Lemaitre B (2012) Gut-associated microbes of Drosophila melanogaster. Gut Microbes 3(4):307–321PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Erkosar B, Storelli G, Defaye A, Leulier F (2013) Host-intestinal microbiota mutualism: “learning on the fly”. Cell Host Microbe 13(1):8–14PubMedCrossRefGoogle Scholar
  33. 33.
    Shin SC, Kim SH, You H, Kim B, Kim AC, Lee KA, Yoon JH, Ryu JH, Lee WJ (2011) Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334(6056):670–674PubMedCrossRefGoogle Scholar
  34. 34.
    Storelli G, Defaye A, Erkosar B, Hols P, Royet J, Leulier F (2011) Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab 14(3):403–414PubMedCrossRefGoogle Scholar
  35. 35.
    Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, Fellner M, Gasser B, Kinsey K, Oppel S, Scheiblauer S, Couto A, Marra V, Keleman K, Dickson BJ (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448(7150):151–156PubMedCrossRefGoogle Scholar
  36. 36.
    Ni JQ, Zhou R, Czech B, Liu LP, Holderbaum L, Yang-Zhou D, Shim HS, Tao R, Handler D, Karpowicz P, Binari R, Booker M, Brennecke J, Perkins LA, Hannon GJ, Perrimon N (2011) A genome-scale shRNA resource for transgenic RNAi in Drosophila. Nat Methods 8(5):405–407PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Vodovar N, Vinals M, Liehl P, Basset A, Degrouard J, Spellman P, Boccard F, Lemaitre B (2005) Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species. Proc Natl Acad Sci U S A 102(32):11414–11419PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Basset A, Tzou P, Lemaitre B, Boccard F (2003) A single gene that promotes interaction of a phytopathogenic bacterium with its insect vector, Drosophila melanogaster. EMBO Rep 4(2):205–209PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Apidianakis Y, Rahme LG (2009) Drosophila melanogaster as a model host for studying Pseudomonas aeruginosa infection. Nat Protoc 4(9):1285–1294PubMedCrossRefGoogle Scholar
  40. 40.
    Edgecomb RS, Harth CE, Schneiderman AM (1994) Regulation of feeding behavior in adult Drosophila melanogaster varies with feeding regime and nutritional state. J Exp Biol 197:215–235PubMedGoogle Scholar
  41. 41.
    Mulcahy H, Sibley CD, Surette MG, Lewenza S (2011) Drosophila melanogaster as an animal model for the study of Pseudomonas aeruginosa biofilm infections in vivo. PLoS Pathog 7(10):e1002299PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Dubreuil RR, MacVicar GR, Maddux PB (1997) Functional studies of the membrane skeleton in Drosophila: identification of a positional cue that targets polarized membrane skeleton assembly. Soc Gen Physiol Ser 52:91–106PubMedGoogle Scholar
  43. 43.
    Shanbhag S, Tripathi S (2005) Electrogenic H + transport and pH gradients generated by a V-H + -ATPase in the isolated perfused larval Drosophila midgut. J Membr Biol 206(1):61–72PubMedCrossRefGoogle Scholar
  44. 44.
    Shanbhag S, Tripathi S (2009) Epithelial ultrastructure and cellular mechanisms of acid and base transport in the Drosophila midgut. J Exp Biol 212(Pt 11):1731–1744PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Matthieu Lestradet
    • 1
  • Kwang-Zin Lee
    • 1
  • Dominique Ferrandon
    • 1
    Email author
  1. 1.UPR9022 du CNRS, Université de StrasbourgStrasbourg CedexFrance

Personalised recommendations