Advertisement

Statistical Analysis and Modeling of Mass Spectrometry-Based Metabolomics Data

  • Bowei Xi
  • Haiwei Gu
  • Hamid Baniasadi
  • Daniel Raftery
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1198)

Abstract

Multivariate statistical techniques are used extensively in metabolomics studies, ranging from biomarker selection to model building and validation. Two model independent variable selection techniques, principal component analysis and two sample t-tests are discussed in this chapter, as well as classification and regression models and model related variable selection techniques, including partial least squares, logistic regression, support vector machine, and random forest. Model evaluation and validation methods, such as leave-one-out cross-validation, Monte Carlo cross-validation, and receiver operating characteristic analysis, are introduced with an emphasis to avoid over-fitting the data. The advantages and the limitations of the statistical techniques are also discussed in this chapter.

Key words

Metabolomics Mass spectrometry Multivariate statistics Classification 

Notes

Acknowledgments

This article was written while one of the authors, Bowei Xi, was on sabbatical leave at the Statistical and Applied Mathematical Sciences Institute (SAMSI, Research Triangle Park, NC). This work is partially funded by NSF DMS-1228348, ARO W911NF-12-1-0558, DoD MURI W911NF-08-1-0238 (BX) and NIH R01GM085291 (DR).

References

  1. 1.
    The NIST MS database. http://www.hmdb.ca/
  2. 2.
  3. 3.
    Gu H, Pan Z, Xi B, Hainline B, Shanaiah N, Asiago V, Gowda G, Raftery D (2009) 1H NMR metabolomics study of age profiling in children. NMR Biomed 22:826–833PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Johnson R, Wichern DW (2002) Applied multivariate statistical analysis, 5th edn. Prentice-Hall, Englewood Cliffs, NJGoogle Scholar
  5. 5.
    Nyamundanda G, Brennan L, Gormley IC (2010) Probabilistic principal component analysis for metabolomic data. BMC Bioinformatics 11:571PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Pan Z, Gu H, Talaty N, Chen H, Shanaiah N, Hainline BE, Cooks G, Raftery D (2007) Principal component analysis of urine metabolites detected by NMR and DESI–MS in patients with inborn errors of metabolism. Anal Bioanal Chem 387:539–549PubMedCrossRefGoogle Scholar
  7. 7.
    Wiklund S, Johansson E, Sjstrm L, Mellerowicz EJ, Edlund U, Shockcor JP, Gottfries J, Moritz T, Trygg J (2008) Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal Chem 80:115–122PubMedCrossRefGoogle Scholar
  8. 8.
    Wikoffa WR, Anforab AT, Liub J, Schultzb PG, Lesleyb SA, Petersb EC, Siuzdak G (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A 106:3698–3703CrossRefGoogle Scholar
  9. 9.
    Gu H, Pan Z, Xi B, Asiago V, Musselman B, Raftery D (2011) Principal component directed partial least squares analysis for combining nuclear magnetic resonance and mass spectrometry data in metabolomics: application to the detection of breast cancer. Anal Chim Acta 686:57–63PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Bretz F, Hothorn T, Westfall P (2011) Multiple comparisons using R. Chapman & Hall, New YorkGoogle Scholar
  11. 11.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc Ser B 57:289–300Google Scholar
  12. 12.
    Storey JD (2002) A direct approach to false discovery rates. J Royal Stat Soc Ser B 64:479–498CrossRefGoogle Scholar
  13. 13.
    Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188CrossRefGoogle Scholar
  14. 14.
    Bender R, Lange S (2001) Adjusting for multiple testing—when and how? J Clin Epidemiol 54:343–349PubMedCrossRefGoogle Scholar
  15. 15.
    Baniasadi H, Nagana Gowda GA, Gu H, Zeng A, Zhuang S, Skill N, Maluccio M, Raftery D (2013) Targeted metabolic profiling of hepatocellular carcinoma and hepatitis C using LC-MS/MS. Electrophoresis 34:2910–2917PubMedGoogle Scholar
  16. 16.
    Wold S, Antti H, Lindgren F, Öhman J (1998) Orthogonal signal correction of near-infrared spectra. Chemom Intell Lab Sys 44:175–185CrossRefGoogle Scholar
  17. 17.
    Liao JG, Chin KV (2007) Logistic regression for disease classification using microarray data: model selection in a large p and small n case. Bioinformatics 23:1945–1951PubMedCrossRefGoogle Scholar
  18. 18.
    Sugimoto M, Wong DT, Hirayama A, Soga T, Tomita M (2010) Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics 6:78–95PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Park MY, Hastie T (2008) Penalized logistic regression for detecting gene interactions. Biostatistics 9:30–50PubMedCrossRefGoogle Scholar
  20. 20.
  21. 21.
    Cortes C, Vapnik V (1995) Support-vector networks. Machine Learning 20:273–297Google Scholar
  22. 22.
    Steinwart I, Christmann C (2008) Support vector machine. Springer, New YorkGoogle Scholar
  23. 23.
    Mahadevan S, Shah SL, Marrie TJ, Slupsky CM (2008) Analysis of metabolomic data using support vector machines. Anal Chem 80:7562–7570PubMedCrossRefGoogle Scholar
  24. 24.
    Zhu J, Rosset S, Hastie T, Tibshirani R (2004) 1-Norm support vector machines. Adv Neural Inf Process Syst 16:49–56Google Scholar
  25. 25.
    Chang CC, Lin CJ (2001) libsvm: a library for support vector machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm/
  26. 26.
    Weka: data mining software in Java. http://www.cs.waikato.ac.nz/ml/weka/
  27. 27.
  28. 28.
    Platt J (1999) Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv Large Margin Classifiers 10:61–74Google Scholar
  29. 29.
    Breiman L (2001) Random forests. Machine Learning 45:5–32CrossRefGoogle Scholar
  30. 30.
    West PR, Weir AM, Smith AM, Donley EL, Cezar GG (2010) Predicting human developmental toxicity of pharmaceuticals using human embryonic stem cells and metabolomics. Toxicol Appl Pharmacol 247:18–27PubMedCrossRefGoogle Scholar
  31. 31.
    Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  32. 32.
  33. 33.
    Carrola J, Rocha CM, Barros AS, Gil AM, Goodfellow BJ, Carreira IM, Bernardo J, Gomes A, Sousa V, Carvalho L, Duarte IF (2011) Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of urine. J Proteome Res 10:221–230PubMedCrossRefGoogle Scholar
  34. 34.
    Molinaro AM, Simon R, Pfeiffer PM (2005) Prediction error estimation: a comparison of resampling methods. Bioinformatics 21:3301–3307PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Bowei Xi
    • 1
  • Haiwei Gu
    • 2
    • 3
  • Hamid Baniasadi
    • 4
  • Daniel Raftery
    • 2
    • 5
  1. 1.Department of StatisticsPurdue UniversityWest LafayetteUSA
  2. 2.Department of Anesthesiology & Pain Medicine, Northwest Metabolomics Research CenterUniversity of WashingtonSeattleUSA
  3. 3.Jiangxi Key Laboratory for Mass Spectrometry and InstrumentationEast China Institute of TechnologyNanchang, JiangxiChina
  4. 4.Department of ChemistryPurdue UniversityWest LafayetteUSA
  5. 5.Fred Hutchinson Cancer Research CenterSeattleUSA

Personalised recommendations