UV Laser Ablation to Measure Cell and Tissue-Generated Forces in the Zebrafish Embryo In Vivo and Ex Vivo

  • Michael Smutny
  • Martin Behrndt
  • Pedro Campinho
  • Verena Ruprecht
  • Carl-Philipp HeisenbergEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1189)


Mechanically coupled cells can generate forces driving cell and tissue morphogenesis during development. Visualization and measuring of these forces is of major importance to better understand the complexity of the biomechanic processes that shape cells and tissues. Here, we describe how UV laser ablation can be utilized to quantitatively assess mechanical tension in different tissues of the developing zebrafish and in cultures of primary germ layer progenitor cells ex vivo.

Key words

Zebrafish—UV laser ablation Mechanical tension Force generation Actomyosin cortex Epiboly Enveloping layer (EVL) Yolk syncytial layer (YSL) Mesoderm cells 



We are grateful to R. Hauschild for advice and assistance to experimental work and the service facilities of the IST Austria.


  1. 1.
    Ingber DE (2006) Cellular mechanotransduction: putting all the pieces together again. FASEB J 20:811–827PubMedCrossRefGoogle Scholar
  2. 2.
    Keller R, Shook D, Skoglund P (2008) The forces that shape embryos: physical aspects of convergent extension by cell intercalation. Phys Biol 5:015007PubMedCrossRefGoogle Scholar
  3. 3.
    Cai Y, Sheetz MP (2009) Force propagation across cells: mechanical coherence of dynamic cytoskeletons. Curr Opin Cell Biol 21:47–50PubMedCrossRefGoogle Scholar
  4. 4.
    Lecuit T, Lenne P-F, Munro E (2011) Force generation, transmission, and integration during cell and tissue morphogenesis. Annu Rev Cell Dev Biol 27:157–184PubMedCrossRefGoogle Scholar
  5. 5.
    Rauzi M, Lenne P-F (2011) Cortical forces in cell shape changes and tissue morphogenesis. Curr Top Dev Biol 95:93–144PubMedCrossRefGoogle Scholar
  6. 6.
    Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7:265–275PubMedCrossRefGoogle Scholar
  7. 7.
    Oates AC, Gorfinkiel N, González-Gaitán M et al (2009) Quantitative approaches in developmental biology. Nat Rev Genet 10:517–530PubMedCrossRefGoogle Scholar
  8. 8.
    Colombelli J, Reynaud EG, Stelzer EHK (2007) Investigating relaxation processes in cells and developing organisms: from cell ablation to cytoskeleton nanosurgery. Methods Cell Biol 82:267–291PubMedCrossRefGoogle Scholar
  9. 9.
    Colombelli J, Solon J (2012) Force communication in multicellular tissues addressed by laser nanosurgery. Cell and tissue research. Springer, BerlinGoogle Scholar
  10. 10.
    Niemz MH (2007) Laser-tissue interactions. Fundamentals and applications, 3rd edn. Springer, BerlinGoogle Scholar
  11. 11.
    Vogel A, Venugopalan V (2003) Mechanisms of pulsed laser ablation of biological tissues. Chem Rev 103:577–644PubMedCrossRefGoogle Scholar
  12. 12.
    Kimmel CB, Ballard WW, Kimmel SR et al (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310PubMedCrossRefGoogle Scholar
  13. 13.
    Kane D, Adams R (2002) Life at the edge: epiboly and involution in the zebrafish. Results Probl Cell Differ 40:117–135PubMedCrossRefGoogle Scholar
  14. 14.
    Siddiqui M, Sheikh H, Tran C et al (2010) The tight junction component Claudin E is required for zebrafish epiboly. Dev Dyn 239:715–722PubMedCrossRefGoogle Scholar
  15. 15.
    Köppen M, Fernández BG, Carvalho L et al (2006) Coordinated cell-shape changes control epithelial movement in zebrafish and Drosophila. Development 133:2671–2681PubMedCrossRefGoogle Scholar
  16. 16.
    Behrndt M, Salbreux G, Campinho P et al (2012) Forces driving epithelial spreading in zebrafish gastrulation. Science 338:257–260PubMedCrossRefGoogle Scholar
  17. 17.
    Arboleda-Estudillo Y, Krieg M, Stühmer J et al (2010) Movement directionality in collective migration of germ layer progenitors. Curr Biol 20:161–169PubMedCrossRefGoogle Scholar
  18. 18.
    Diz-Muñoz A, Krieg M, Bergert M et al (2010) Control of directed cell migration in vivo by membrane-to-cortex attachment. PLoS Biol 8:e1000544PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Mayer M, Depken M, Bois JS et al (2010) Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows. Nature 467:617–621PubMedCrossRefGoogle Scholar
  20. 20.
    Carvalho L, Heisenberg C-P (2009) Imaging zebrafish embryos by two-photon excitation time-lapse microscopy. Methods Mol Biol 546:273–287PubMedCrossRefGoogle Scholar
  21. 21.
    Colombelli J, Grill SW (2004) Ultraviolet diffraction limited nanosurgery of live biological tissues. Rev Sci Instrum 75:472–478CrossRefGoogle Scholar
  22. 22.
    Weber GF, Bjerke MA, DeSimone DW (2012) A mechanoresponsive cadherin-keratin complex directs polarized protrusive behavior and collective cell migration. Dev Cell 22:104–115PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Rauzi M, Verant P, Lecuit T et al (2008) Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis. Nat Cell Biol 10:1401–1410PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Michael Smutny
    • 1
  • Martin Behrndt
    • 1
  • Pedro Campinho
    • 1
  • Verena Ruprecht
    • 1
  • Carl-Philipp Heisenberg
    • 1
    Email author
  1. 1.Institute of Science and Technology AustriaKlosterneuburgAustria

Personalised recommendations