Visualizing Notch Signaling In Vivo in Drosophila Tissues

  • Benjamin E. Housden
  • Jinghua Li
  • Sarah J. BrayEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1187)


The ability to visualize Notch pathway activity in vivo is invaluable for studying the functions and mechanisms of Notch signaling. A variety of tools have been developed to enable monitoring of pathway activity in Drosophila, including endogenous Notch-responsive genes and synthetic transcriptional reporter constructs. Here we summarize some of the different Notch signaling reporters that are available, discuss their relative merits, and describe two methods for visualizing their expression (immunostaining and X-gal staining). These approaches are widely applicable to a range of tissues and stages in Drosophila development.

Key words

Notch signaling Notch reporters Transcriptional reporters Antibodies X-gal staining Immunostaining Fluorescent reporters 



We would like to thank Hamid Moosavi for contributing data used in Fig. 1.


  1. 1.
    Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7:678–689PubMedCrossRefGoogle Scholar
  2. 2.
    Fryer CJ, Lamar E, Turbachova I et al (2002) Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex. Genes Dev 16:1397–1411PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Fryer CJ, White JB, Jones KA (2004) Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell 16:509–520PubMedCrossRefGoogle Scholar
  4. 4.
    Schroeter EH, Kisslinger JA, Kopan R (1998) Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393:382–386PubMedCrossRefGoogle Scholar
  5. 5.
    Micchelli CA, Rulifson EJ, Blair SS (1997) The function and regulation of cut expression on the wing margin of Drosophila: Notch, wingless and a dominant negative role for Delta and Serrate. Development 124:1485–1495PubMedGoogle Scholar
  6. 6.
    Bailey AM, Posakony JW (1995) Suppressor of hairless directly activates transcription of enhancer of split complex genes in response to Notch receptor activity. Genes Dev 9:2609–2622PubMedCrossRefGoogle Scholar
  7. 7.
    Jennings B, Preiss A, Delidakis C et al (1994) The Notch signalling pathway is required for Enhancer of split bHLH protein expression during neurogenesis in the Drosophila embryo. Development 120:3537–3548PubMedGoogle Scholar
  8. 8.
    Lai EC, Bodner R, Posakony JW (2000) The enhancer of split complex of Drosophila includes four Notch-regulated members of the bearded gene family. Development 127:3441–3455PubMedGoogle Scholar
  9. 9.
    Lecourtois M, Schweisguth F (1995) The neurogenic suppressor of hairless DNA-binding protein mediates the transcriptional activation of the enhancer of split complex genes triggered by Notch signaling. Genes Dev 9:2598–2608PubMedCrossRefGoogle Scholar
  10. 10.
    Wech I, Bray S, Delidakis C et al (1999) Distinct expression patterns of different enhancer of split bHLH genes during embryogenesis of Drosophila melanogaster. Dev Genes Evol 209:370–375PubMedCrossRefGoogle Scholar
  11. 11.
    de Celis JF, de Celis J, Ligoxygakis P et al (1996) Functional relationships between Notch, Su(H) and the bHLH genes of the E(spl) complex: the E(spl) genes mediate only a subset of Notch activities during imaginal development. Development 122:2719–2728PubMedGoogle Scholar
  12. 12.
    Nellesen DT, Lai EC, Posakony JW (1999) Discrete enhancer elements mediate selective responsiveness of enhancer of split complex genes to common transcriptional activators. Dev Biol 213:33–53PubMedCrossRefGoogle Scholar
  13. 13.
    Furriols M, Bray S (2001) A model Notch response element detects suppressor of hairless-dependent molecular switch. Curr Biol 11:60–64PubMedCrossRefGoogle Scholar
  14. 14.
    Housden BE, Millen K, Bray SJ (2012) Drosophila reporter vectors compatible with phiC31 integrase transgenesis techniques and their use to generate new Notch reporter fly lines. G3 Bethesda 2:79–82PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Saj A, Arziman Z, Stempfle D et al (2010) A combined ex vivo and in vivo RNAi screen for notch regulators in Drosophila reveals an extensive notch interaction network. Dev Cell 18:862–876PubMedCrossRefGoogle Scholar
  16. 16.
    Go MJ, Eastman DS, Artavanis-Tsakonas S (1998) Cell proliferation control by Notch signaling in Drosophila development. Development 125:2031–2040PubMedGoogle Scholar
  17. 17.
    Li X, Zhao X, Fang Y et al (1998) Generation of destabilized green fluorescent protein as a transcription reporter. J Biol Chem 273:34970–34975PubMedCrossRefGoogle Scholar
  18. 18.
    Presente A, Shaw S, Nye JS et al (2002) Transgene-mediated RNA interference defines a novel role for notch in chemosensory startle behavior. Genesis 34:165–169PubMedCrossRefGoogle Scholar
  19. 19.
    Helms W, Lee H, Ammerman M et al (1999) Engineered truncations in the Drosophila mastermind protein disrupt Notch pathway function. Dev Biol 215:358–374PubMedCrossRefGoogle Scholar
  20. 20.
    McGuire SE, Le PT, Osborn AJ et al (2003) Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302:1765–1768PubMedCrossRefGoogle Scholar
  21. 21.
    Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415PubMedGoogle Scholar
  22. 22.
    Xu T, Rubin GM (1993) Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117:1223–1237PubMedGoogle Scholar
  23. 23.
    Lee T, Luo L (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22:451–461PubMedCrossRefGoogle Scholar
  24. 24.
    Classen AK, Aigouy B, Giangrande A et al (2008) Imaging Drosophila pupal wing morphogenesis. Methods Mol Biol 420:265–275PubMedCrossRefGoogle Scholar
  25. 25.
    Muller HA (2008) Immunolabeling of embryos. Methods Mol Biol 420:207–218PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Stocker H, Gallant P (2008) Getting started : an overview on raising and handling Drosophila. Methods Mol Biol 420:27–44PubMedCrossRefGoogle Scholar
  27. 27.
    Cooper MT, Tyler DM, Furriols M et al (2000) Spatially restricted factors cooperate with notch in the regulation of Enhancer of split genes. Dev Biol 221:390–403PubMedCrossRefGoogle Scholar
  28. 28.
    de Celis JF, Tyler DM, de Celis J et al (1998) Notch signalling mediates segmentation of the Drosophila leg. Development 125:4617–4626PubMedGoogle Scholar
  29. 29.
    Pines MK, Housden BE, Bernard F et al (2010) The cytolinker Pigs is a direct target and a negative regulator of Notch signalling. Development 137:913–922PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Assa-Kunik E, Torres IL, Schejter ED et al (2007) Drosophila follicle cells are patterned by multiple levels of Notch signaling and antagonism between the Notch and JAK/STAT pathways. Development 134:1161–1169PubMedCrossRefGoogle Scholar
  31. 31.
    Almeida MS, Bray SJ (2005) Regulation of post-embryonic neuroblasts by Drosophila Grainyhead. Mech Dev 122:1282–1293PubMedCrossRefGoogle Scholar
  32. 32.
    Cooper MT, Bray SJ (1999) Frizzled regulation of Notch signalling polarizes cell fate in the Drosophila eye. Nature 397:526–530PubMedCrossRefGoogle Scholar
  33. 33.
    Kramatschek B, Campos-Ortega JA (1994) Neuroectodermal transcription of the Drosophila neurogenic genes E(spl) and HLH-m5 is regulated by proneural genes. Development 120:815–826PubMedGoogle Scholar
  34. 34.
    Castro B, Barolo S, Bailey AM et al (2005) Lateral inhibition in proneural clusters: cis-regulatory logic and default repression by suppressor of hairless. Development 132:3333–3344PubMedCrossRefGoogle Scholar
  35. 35.
    Barolo S, Castro B, Posakony JW (2004) New Drosophila transgenic reporters: insulated P-element vectors expressing fast-maturing RFP. Biotechniques 36:436–440, 442PubMedGoogle Scholar
  36. 36.
    Afek Y, Alon N, Barad O et al (2011) A biological solution to a fundamental distributed computing problem. Science 331:183–185PubMedCrossRefGoogle Scholar
  37. 37.
    Williams JA, Paddock SW, Vorwerk K et al (1994) Organization of wing formation and induction of a wing-patterning gene at the dorsal/ventral compartment boundary. Nature 368:299–305PubMedCrossRefGoogle Scholar
  38. 38.
    Djiane A, Krejci A, Bernard F et al (2013) Dissecting the mechanisms of Notch induced hyperplasia. EMBO J 32:60–71PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Blochlinger K, Bodmer R, Jack J et al (1988) Primary structure and expression of a product from cut, a locus involved in specifying sensory organ identity in Drosophila. Nature 333:629–635PubMedCrossRefGoogle Scholar
  40. 40.
    Brook WJ, Cohen SM (1996) Antagonistic interactions between wingless and decapentaplegic responsible for dorsal-ventral pattern in the Drosophila Leg. Science 273:1373–1377PubMedCrossRefGoogle Scholar
  41. 41.
    Yip ML, Lamka ML, Lipshitz HD (1997) Control of germ-band retraction in Drosophila by the zinc-finger protein HINDSIGHT. Development 124:2129–2141PubMedGoogle Scholar
  42. 42.
    Giráldez AJ, Pérez L, Cohen SM (2002) A naturally occurring alternative product of the mastermind locus that represses notch signalling. Mech Dev 115:101–105PubMedCrossRefGoogle Scholar
  43. 43.
    Lieber T, Kidd S, Alcamo E et al (1993) Antineurogenic phenotypes induced by truncated Notch proteins indicate a role in signal transduction and may point to a novel function for Notch in nuclei. Genes Dev 7:1949–1965PubMedCrossRefGoogle Scholar
  44. 44.
    Seugnet L, Simpson P, Haenlin M (1997) Requirement for dynamin during Notch signaling in Drosophila neurogenesis. Dev Biol 192:585–598PubMedCrossRefGoogle Scholar
  45. 45.
    Rebay I, Fehon RG, Artavanis-Tsakonas S (1993) Specific truncations of Drosophila Notch define dominant activated and dominant negative forms of the receptor. Cell 74:319–329PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Benjamin E. Housden
    • 1
    • 2
  • Jinghua Li
    • 2
  • Sarah J. Bray
    • 2
    Email author
  1. 1.Department of GeneticsHarvard Medical SchoolBostonUSA
  2. 2.Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK

Personalised recommendations