Hematopoietic Differentiation of Pluripotent Stem Cells in Culture

  • Jason A. Mills
  • Prasuna Paluru
  • Mitchell J. Weiss
  • Paul Gadue
  • Deborah L. French
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1185)

Abstract

This chapter describes a two-dimensional “monolayer” system for differentiating human pluripotent stem cells (PSCs) into “primitive” hematopoietic progenitor cells (HPCs) resembling those produced in vivo by the early embryonic yolk sac. This experimental system utilizes defined conditions without serum or feeder cells. Cytokines are added sequentially to stimulate the formation of mesoderm and its subsequent patterning to hematopoietic progenitors. The HPCs produced by this protocol have multi-lineage potential (erythroid, megakaryocyte, and myeloid) and can be isolated as a homogeneous population for use in standard hematopoietic studies including liquid expansion to mature lineages and colony assays. In addition, the HPCs can be cryopreserved for distribution or analysis at later times. The HPCs generated by this protocol have been used successfully to better define intrinsic variation in hematopoietic potential between different PSC lines and to model human hematopoietic diseases using patient-derived induced pluripotent stem cells.

Key words

Hematopoietic progenitor cells Embryonic stem cells Induced pluripotent stem cells Primitive hematopoiesis 

References

  1. 1.
    Yoshida Y, Yamanaka S (2010) Recent stem cell advances: induced pluripotent stem cells for disease modeling and stem cell-based regeneration. Circulation 122:80–87CrossRefPubMedGoogle Scholar
  2. 2.
    Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132:661–680CrossRefPubMedGoogle Scholar
  3. 3.
    Orkin SH, Zon LI (2008) Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132:631–644PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Migliaccio G, Migliaccio AR et al (1986) Human embryonic hemopoiesis. Kinetics of progenitors and precursors underlying the yolk sac—liver transition. J Clin Invest 78:51–60PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Tavian M, Peault B (2005) Embryonic development of the human hematopoietic system. Int J Dev Biol 49:243–250CrossRefPubMedGoogle Scholar
  6. 6.
    McGrath K, Palis J (2008) Ontogeny of erythropoiesis in the mammalian embryo. Curr Top Dev Biol 82:1–22CrossRefPubMedGoogle Scholar
  7. 7.
    McGrath KE, Frame JM et al (2011) A transient definitive erythroid lineage with unique regulation of the beta-globin locus in the mammalian embryo. Blood 117:4600–4608PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Schechter AN (2008) Hemoglobin research and the origins of molecular medicine. Blood 112:3927–3938PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Dzierzak E, Speck NA (2008) Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat Immunol 9:129–136PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Choi KD, Vodyanik MA et al (2012) Identification of the hemogenic endothelial progenitor and its direct precursor in human pluripotent stem cell differentiation cultures. Cell Rep 2:553–567PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Kennedy M, Awong G et al (2012) T lymphocyte potential marks the emergence of definitive hematopoietic progenitors in human pluripotent stem cell differentiation cultures. Cell Rep 2:1722–1735CrossRefPubMedGoogle Scholar
  12. 12.
    Slukvin II (2013) Hematopoietic specification from human pluripotent stem cells: current advances and challenges toward de novo generation of hematopoietic stem cells. Blood 122:4035–4046CrossRefPubMedGoogle Scholar
  13. 13.
    Kaufman DS, Hanson ET et al (2001) Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A 98:10716–10721PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Vodyanik MA, Bork JA et al (2005) Human embryonic stem cell-derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood 105:617–626CrossRefPubMedGoogle Scholar
  15. 15.
    Takayama N, Nishikii H et al (2008) Generation of functional platelets from human embryonic stem cells in vitro via ES-sacs, VEGF-promoted structures that concentrate hematopoietic progenitors. Blood 111:5298–5306CrossRefPubMedGoogle Scholar
  16. 16.
    Zambidis ET, Peault B et al (2005) Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development. Blood 106:860–870PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Ng ES, Davis RP et al (2005) Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood 106:1601–1603CrossRefPubMedGoogle Scholar
  18. 18.
    Kennedy M, D'Souza SL et al (2007) Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. Blood 109:2679–2687PubMedCentralPubMedGoogle Scholar
  19. 19.
    Mills JA, Wang K et al (2013) Clonal genetic and hematopoietic heterogeneity among human-induced pluripotent stem cell lines. Blood 122:2047–2051CrossRefPubMedGoogle Scholar
  20. 20.
    Chou ST, Byrska-Bishop M et al (2012) Trisomy 21-associated defects in human primitive hematopoiesis revealed through induced pluripotent stem cells. Proc Natl Acad Sci U S A 109:17573–17578PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Gandre-Babbe S, Paluru P et al (2013) Patient-derived induced pluripotent stem cells recapitulate hematopoietic abnormalities of juvenile myelomonocytic leukemia. Blood 121:4925–4929PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Garcon L, Ge J et al (2013) Ribosomal and hematopoietic defects in induced pluripotent stem cells derived from Diamond Blackfan anemia patients. Blood 122:912–921CrossRefPubMedGoogle Scholar
  23. 23.
    Gadue P, Huber TL et al (2006) Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc Natl Acad Sci U S A 103:16806–16811PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Watanabe K, Ueno M et al (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25:681–686CrossRefPubMedGoogle Scholar
  25. 25.
    Mikkola HK, Fujiwara Y et al (2003) Expression of CD41 marks the initiation of definitive hematopoiesis in the mouse embryo. Blood 101:508–516CrossRefPubMedGoogle Scholar
  26. 26.
    Klimchenko O, Mori M et al (2009) A common bipotent progenitor generates the erythroid and megakaryocyte lineages in embryonic stem cell-derived primitive hematopoiesis. Blood 114:1506–1517CrossRefPubMedGoogle Scholar
  27. 27.
    Vodyanik MA, Thomson JA et al (2006) Leukosialin (CD43) defines hematopoietic progenitors in human embryonic stem cell differentiation cultures. Blood 108:2095–2105PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Choi KD, Vodyanik MA et al (2009) Generation of mature human myelomonocytic cells through expansion and differentiation of pluripotent stem cell-derived lin-CD34 + CD43 + CD45+ progenitors. J Clin Invest 119:2818–2829PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Choi KD, Yu J et al (2009) Hematopoietic and endothelial differentiation of human induced pluripotent stem cells. Stem Cells 27:559–567PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Maclean GA, Menne TF et al (2012) Altered hematopoiesis in trisomy 21 as revealed through in vitro differentiation of isogenic human pluripotent cells. Proc Natl Acad Sci U S A 109:17567–17572PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jason A. Mills
    • 1
  • Prasuna Paluru
    • 2
  • Mitchell J. Weiss
    • 3
  • Paul Gadue
    • 2
  • Deborah L. French
    • 2
  1. 1.Department of Pathology and Laboratory Medicine and Center for Cellular and Molecular TherapeuticsThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  2. 2.Department of Pathology and Laboratory Medicine and Center for Cellular and Molecular TherapeuticsThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  3. 3.Department of PediatricsThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA

Personalised recommendations