The LacZ Plasmid-Based Transgenic Mouse Model: An Integrative Approach to Study the Genotoxicity of Nanomaterials

  • Henriqueta Louro
  • Miguel Pinto
  • Nádia Vital
  • Ana M. Tavares
  • Pedro M. Costa
  • Maria João SilvaEmail author
Part of the Methods in Pharmacology and Toxicology book series (MIPT)


Numerous in vitro studies have been performed to address the potential genotoxicity of chemicals and of emerging products, e.g., nanomaterials. Although valuable for hazard assessment, the in vitro assays do not reflect the complexity of an organism, including, bioavailability, toxicokinetics, and immune responses. Moreover, the biological effects at the target organs are known to be greatly influenced by factors as cell proliferative rate, metabolic, and DNA repair capacities. In this sense, data from suitable in vivo assays are useful to evaluate the performance of in vitro assays and to strengthen the knowledge about the genotoxicity of chemicals and nanomaterials, using several routes of exposure, at a whole organism level.

This chapter provides an overview of an integrated experimental design, based on the use of a LacZ plasmid-based transgenic mouse model to investigate multiple genotoxicity endpoints in several organs, towards the safety evaluation of nanomaterials. This approach includes the analysis of chromosome instability, assessed by the micronucleus assay in blood or bone marrow cells and by sister chromatid exchanges in splenocytes, the analysis of DNA breaks and oxidative DNA damage by the comet assay, and the quantification of gene mutations in multiple organs. Furthermore, histological markers e.g., of inflammation and apoptosis, can add information about other relevant cell responses. A key point is that all assays are performed on the same animal, therefore increasing the efficiency while reducing the cost and the number of animals under experimentation, in compliance with the EU recommendations.

Overall, gathering the data from the several endpoints and organs of the same animal depicts the complex response of a whole-organism to nanomaterials exposure, thereby providing a better prediction of the effects on humans.

Key words

In vivo genotoxicity testing Comet assay Micronucleus assay LacZ mutations Histopathology Nanomaterials 



The authors thank Keld Jensen (NRCWE, Denmark), Conny van Oostrom, Edwin Zwart, Harry van Steeg, Jan van Benthem and Wim de Jong (RIVM, the Netherlands), Lisa Giovannelly and co-workers (University of Florence, Italy), and Andrew Collins (University of Oslo, Norway) for their contribution to the development of the described methodologies at INSA.


  1. 1.
    Louro H, Silva MJ (2010) In vivo mutagenic effects of alkylating agents eliciting different DNA-adducts. In: Alvarez E, Cunha R (eds) DNA adducts: formation, detection and mutagenesis. Nova Science, New YorkGoogle Scholar
  2. 2.
    Rothfuss A, Honma M, Czich A et al (2011) Improvement of in vivo genotoxicity assessment: combination of acute tests and integration into standard toxicity testing. Mutat Res 723:108–120PubMedCrossRefGoogle Scholar
  3. 3.
    Bowen DE, Whitwell JH, Lillford L et al (2011) Evaluation of a multi-endpoint assay in rats, combining the bone-marrow micronucleus test, the Comet assay and the flow-cytometric peripheral blood micronucleus test. Mutat Res 722:7–19PubMedCrossRefGoogle Scholar
  4. 4.
    Vasquez MZ (2010) Combining the in vivo comet and micronucleus assays: a practical approach to genotoxicity testing and data interpretation. Mutagenesis 25:187–199PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Boverhof DR, Chamberlain MP, Elcombe CR et al (2011) Transgenic animal models in toxicology: historical perspectives and future outlook. Toxicol Sci 121:207–233PubMedCrossRefGoogle Scholar
  6. 6.
    OECD (2011) OECD guideline for the testing of chemicals—transgenic rodent somatic and germ cell gene mutation assays. OECDGoogle Scholar
  7. 7.
    ICH—International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (2012) S2(R1) Genotoxicity Testing and Data Interpretation for Pharmaceuticals Intended for Human Use. US Department of Health and Human Services, Food and Drug AdministrationGoogle Scholar
  8. 8.
    Boerrigter ME, Dollé ME, Martus HJ et al (1995) Plasmid-based transgenic mouse model for studying in vivo mutations. Nature 377: 657–659PubMedCrossRefGoogle Scholar
  9. 9.
    Gossen JA, Martus HJ, Wei JY et al (1995) Spontaneous and X-ray-induced deletion mutations in a LacZ plasmid-based transgenic mouse model. Mutat Res 331:89–97PubMedCrossRefGoogle Scholar
  10. 10.
    Louro H, Silva MJ, Boavida MG (2002) Mutagenic activity of cisplatin in the lacZ plasmid-based transgenic mouse model. Environ Mol Mutagen 40:283–291PubMedCrossRefGoogle Scholar
  11. 11.
    OECD (1997) Test No. 474: Mammalian erythrocyte micronucleus test, OECD guidelines for the testing of chemicals, Section 4. OECDGoogle Scholar
  12. 12.
    OECD (2010) Test No. 487: In vitro mammalian cell micronucleus test, OECD guidelines for the testing of chemicals, Section 4: Health effects. OECDGoogle Scholar
  13. 13.
    Sato S, Taketomi M, Nakajima M et al (1995) Effect of aging on spontaneous micronucleus frequencies in peripheral blood of nine mouse strains: the results of the 7th collaborative study organized by CSGMT/JEMS.MMS. Collaborative Study Group for the Micronucleus Test. Environmental Mutagen Society of Japan. Mammalian Mutagenesis Study Group. Mutat Res 338:51–57PubMedCrossRefGoogle Scholar
  14. 14.
    Heddle JA, Fenech M, Hayashi M et al (2011) Reflections on the development of micronucleus assays. Mutagenesis 26:3–10PubMedCrossRefGoogle Scholar
  15. 15.
    EFSA (2012) Minimum criteria for the acceptance of in vivo alkaline Comet Assay reportsGoogle Scholar
  16. 16.
    Jackson P, Pedersen LM, Kyjovska ZO et al (2013) Validation of freezing tissues and cells for analysis of DNA strand break levels by comet assay. Mutagenesis 28(6):699–707PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Azqueta A, Collins AR (2013) The essential comet assay: a comprehensive guide to measuring DNA damage and repair. Arch Toxicol 87:949–968PubMedCrossRefGoogle Scholar
  18. 18.
    Collins AR (2014) Measuring oxidative damage to DNA and its repair with the comet assay. Biochim Biophys Acta 1840(2):794–800PubMedCrossRefGoogle Scholar
  19. 19.
    Silva MJ, Dias A, Barreta A et al (2002) Low frequency noise and whole-body vibration cause increased levels of sister chromatid exchange in splenocytes of exposed mice. Teratog Carcinog Mutagen 22:195–203PubMedCrossRefGoogle Scholar
  20. 20.
    Perry P, Wolff S (1974) New Giemsa method for the differential staining of sister chromatids. Nature 251:156–158PubMedCrossRefGoogle Scholar
  21. 21.
    Tice RR, Agurell E, Anderson D et al (2000) Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221PubMedCrossRefGoogle Scholar
  22. 22.
    European Union 2010 Directive 2010/63/EU of the European parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes NCIL. Official Journal of the European UnionGoogle Scholar
  23. 23.
    OECD (2010) Guidance manual for the testing of manufactured nanomaterials. ENV/JM/MONO(2009)20/REVGoogle Scholar
  24. 24.
    Tavares A, Louro H, Antunes S et al (2014) Genotoxicity evaluation of nanosized titanium dioxide, synthetic amorphous silica and multi-walled carbon nanotubes in human lymphocytes. Toxicol In Vitro 28(1):60–69PubMedCrossRefGoogle Scholar
  25. 25.
    Landsiedel R, Kapp MD, Schulz M et al (2009) Genotoxicity investigations on nanomaterials: methods, preparation and characterization of test material, potential artifacts and limitations–many questions, some answers. Mutat Res 681:241–258PubMedCrossRefGoogle Scholar
  26. 26.
    Recio L, Hobbs C, Caspary W et al (2010) Dose–response assessment of four genotoxic chemicals in a combined mouse and rat micronucleus (MN) and Comet assay protocol. J Toxicol Sci 35:149–162PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Louro H, Faustino I, Dias A et al (2010) Poly (ADP-ribose) polymerase-1 deficiency does not affect ethylnitrosourea mutagenicity in liver and testis of lacZ transgenic mice. Environ Mol Mutagen 51:322–329PubMedCrossRefGoogle Scholar
  28. 28.
    Charles JL, Jacobson-Kram D, Condie LW Jr et al (1986) The kinetics of in vivo sister chromatid exchange induction in mouse bone marrow cells by ethylnitrosourea and methylnitrosourea. Toxicol Appl Pharmacol 84:56–65PubMedCrossRefGoogle Scholar
  29. 29.
    Jensen KA, Kembouche Y, Christiansen E et al (2011) The generic NANOGENOTOX dispersion protocol—Standard Operation Procedure (SOP).
  30. 30.
    Gossen JA, de Leeuw WJ, Molijn AC et al (1993) Plasmid rescue from transgenic mouse DNA using LacI repressor protein conjugated to magnetic beads. Biotechniques 14:624–629PubMedGoogle Scholar
  31. 31.
    Gossen JA, Vijg J (1988) E. coli C: a convenient host strain for rescue of highly methylated DNA. Nucleic Acids Res 16:9343PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Gossen JA, de Leeuw WJ, Tan CH et al (1989) Efficient rescue of integrated shuttle vectors from transgenic mice: a model for studying mutations in vivo. Proc Natl Acad Sci U S A 86:7971–7975PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Louro H, Pinheiro I, Costa P et al (2008) Mutagenic effects of poly (ADP-ribose) polymerase-1 deficiency in transgenic mice. Mutat Res 640:82–88PubMedCrossRefGoogle Scholar
  34. 34.
    Dolle ME, Snyder WK, van Orsouw NJ et al (1999) Background mutations and polymorphisms in lacZ-plasmid transgenic mice. Environ Mol Mutagen 34:112–120PubMedCrossRefGoogle Scholar
  35. 35.
    Boerrigter ME, Vijg J (1997) Sources of variability in mutant frequency determinations in different organs of lacZ plasmid-based transgenic mice: experimental features and statistical analysis. Environ Mol Mutagen 29:221–229PubMedCrossRefGoogle Scholar
  36. 36.
    Hartmann A, Agurell E, Beevers C et al (2003) Recommendations for conducting the in vivo alkaline Comet assay. 4th International Comet Assay Workshop. Mutagenesis 18:45–51PubMedCrossRefGoogle Scholar
  37. 37.
    Brendler-Schwaab SY, Schmezer P, Liegibel U et al (1994) Cells of different tissues for in vitro and in vivo studies in toxicology: compilation of isolation methods. Toxicol In Vitro 8: 1285–1302PubMedCrossRefGoogle Scholar
  38. 38.
    Hayashi M, Morita T, Kodama Y et al (1990) The micronucleus assay with mouse peripheral blood reticulocytes using acridine orange-coated slides. Mutat Res 245:245–249PubMedCrossRefGoogle Scholar
  39. 39.
    Louro H, Silva MJ (2011) Cost/benefit of mutation induction under PARP1 deficiency: from genomic instability to therapy. In: Urbano KV (ed) Advances in genetics research. Nova Science, New York, pp 109–134Google Scholar
  40. 40.
    Dass SB, Ali SF, Heflich RH et al (1997) Frequency of spontaneous and induced micronuclei in the peripheral blood of aging mice. Mutat Res 381:105–110PubMedCrossRefGoogle Scholar
  41. 41.
    Bender MA, Preston RJ, Leonard RC et al (1992) On the distribution of spontaneous SCE in human peripheral blood lymphocytes. Mutat Res 281:227–232PubMedCrossRefGoogle Scholar
  42. 42.
    Bonner JC, Silva RM, Taylor AJ et al (2013) Interlaboratory evaluation of rodent pulmonary responses to engineered nanomaterials: The NIEHS Nano GO Consortium. Environ Health Perspect 121:676–682PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Azqueta A, Langie SA, Slyskova J et al (2013) Measurement of DNA base and nucleotide excision repair activities in mammalian cells and tissues using the comet assay—a methodological overview. DNA Repair 12:1007–1010PubMedCrossRefGoogle Scholar
  44. 44.
    Azqueta A, Gutzkow KB, Priestley CC et al (2013) A comparative performance test of standard, medium- and high-throughput comet assays. Toxicol In Vitro 27:768–773PubMedCrossRefGoogle Scholar
  45. 45.
    Shaposhnikov S, Azqueta A, Henriksson S et al (2010) Twelve-gel slide format optimised for comet assay and fluorescent in situ hybridisation. Toxicol Lett 195:31–34PubMedCrossRefGoogle Scholar
  46. 46.
    MacGregor JT, Bishop ME, McNamee JP et al (2006) Flow cytometric analysis of micronuclei in peripheral blood reticulocytes: II. An efficient method of monitoring chromosomal damage in the rat. Toxicol Sci 94:92–107PubMedCrossRefGoogle Scholar
  47. 47.
    Dertinger SD, Bishop ME, McNamee JP et al (2006) Flow cytometric analysis of micronuclei in peripheral blood reticulocytes: I. Intra- and interlaboratory comparison with microscopic scoring. Toxicol Sci 94:83–91PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Henriqueta Louro
    • 1
  • Miguel Pinto
    • 1
  • Nádia Vital
    • 1
  • Ana M. Tavares
    • 1
  • Pedro M. Costa
    • 1
    • 2
  • Maria João Silva
    • 1
    Email author
  1. 1.Departmento de Genética HumanaInstituto Nacional de Saúde Dr. Ricardo Jorge, I.P. (INSA)LisboaPortugal
  2. 2.IMAR - Instituto do Mar, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal

Personalised recommendations