Skip to main content

USER Friendly DNA Recombination (USERec): Gene Library Construction Requiring Minimal Sequence Homology

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1179))

Abstract

USER friendly DNA recombination (USERec) is based on near homology-independent recombination of DNA fragments (~40–400 bp) that are efficiently reassembled into full-length genes, proven for up to ten fragments. USERec requires a minimal crossover sequence (a 5′-AN4–8 T-3′ motif) of the fragments that can be implemented wherever structural or functional comparisons suggest a fragment boundary. The greatly reduced sequence constraints of this method facilitate directional assembly of gene fragments for applications such as exon or domain shuffling, loop grafting, reassembly of natural modular biosynthetic assembly lines, and rearrangement of structurally (but not sequence) homologous proteins.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kolkman JA, Stemmer WP (2001) Directed evolution of proteins by exon shuffling. Nat Biotechnol 19(5):423–428

    Article  CAS  PubMed  Google Scholar 

  2. Stemmer WP (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370:389–391

    Article  CAS  PubMed  Google Scholar 

  3. Zhao H, Giver L, Shao Z, Affholter JA, Arnold FH (1998) Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat Biotechnol 16:258–261

    Article  CAS  PubMed  Google Scholar 

  4. Ostermeier M, Nixon AE, Shim JH, Benkovic SJ (1999) Combinatorial protein engineering by incremental truncation. Proc Natl Acad Sci U S A 96:3562–3567

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Lutz S, Ostermeier M, Moore GL, Maranas CD, Benkovic SJ (2001) Creating multiple-crossover DNA libraries independent of sequence identity. Proc Natl Acad Sci U S A 98:11248–11253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Sieber V, Martinez CA, Arnold FH (2001) Libraries of hybrid proteins from distantly related sequences. Nat Biotechnol 19(5):456–460

    Article  CAS  PubMed  Google Scholar 

  7. Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77(1):61–68

    Article  CAS  PubMed  Google Scholar 

  8. Tsuji T, Onimaru M, Yanagawa H (2001) Random multi-recombinant PCR for the construction of combinatorial protein libraries. Nucleic Acids Res 29(20):E97

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Hiraga K, Arnold FH (2003) General method for sequence-independent site-directed chimeragenesis. J Mol Biol 330:287–296

    Article  CAS  PubMed  Google Scholar 

  10. Meyer MM, Hiraga K, Arnold FH (2006) Combinatorial recombination of gene fragments to construct a library of chimeras. Curr Protoc Protein Sci Chapter 26, Unit 26.2

    Google Scholar 

  11. Meyer MM, Hochrein L, Arnold FH (2006) Structure-guided SCHEMA recombination of distantly related beta-lactamases. Protein Eng Des Sel 19:563–570

    Article  CAS  PubMed  Google Scholar 

  12. Geu-Flores F, Nour-Eldin HH, Nielsen MT, Halkier BA (2007) USER fusion: a rapid and efficient method for simultaneous fusion and cloning of multiple PCR products. Nucleic Acids Res 35(7):e55

    Article  PubMed Central  PubMed  Google Scholar 

  13. Bitinaite J, Rubino M, Varma KH, Schildkraut I, Vaisvila R, Vaiskunaite R (2007) USER friendly DNA engineering and cloning method by uracil excision. Nucleic Acids Res 35(6):1992–2002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Nour-Eldin HH, Hansen BG, Norholm MH, Jensen JK, Halkier BA (2006) Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments. Nucleic Acids Res 34(18):e122

    Article  PubMed Central  PubMed  Google Scholar 

  15. Villiers BR, Stein V, Hollfelder F (2010) USER friendly DNA recombination (USERec): a simple and flexible near homology-independent method for gene library construction. Protein Eng Des Sel 23(1):1–8

    Article  CAS  PubMed  Google Scholar 

  16. Mootz HD, Marahiel MA (1997) The tyrocidine biosynthesis operon of Bacillus brevis: complete nucleotide sequence and biochemical characterization of functional internal adenylation domains. J Bacteriol 179(21):6843–6850

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Grünewald S, Mootz HD, Stehmeier P, Stachelhaus T (2004) In vivo production of artificial nonribosomal peptide products in the heterologous host Escherichia coli. Appl Environ Microbiol 70(6):3282–3291

    Article  Google Scholar 

  18. Villiers B, Hollfelder F (2011) Directed evolution of a gatekeeper domain in nonribosomal peptide synthesis. Chem Biol 18(10):1290–1299

    Article  CAS  PubMed  Google Scholar 

  19. Olsen LR, Hansen NB, Bonde MT, Genee HJ, Holm DK, Carlsen S, Hansen BG, Patil KR, Mortensen UH, Wernersson R (2011) PHUSER (Primer Help for USER): a novel tool for USER fusion primer design. Nucleic Acids Res 39(Web server issue):W61–W67

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Bhat KS (1996) Multiple site-directed mutagenesis. Methods Mol Biol 57:269–277

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Medical Research Council. B. V. was supported by a fellowship from the EU Marie Curie Early-Stage Training Site ChemBioCam. F. H. is an ERC Starting Investigator. We thank David Ackerley for his thorough editing of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Hollfelder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Villiers, B., Hollfelder, F. (2014). USER Friendly DNA Recombination (USERec): Gene Library Construction Requiring Minimal Sequence Homology. In: Gillam, E., Copp, J., Ackerley, D. (eds) Directed Evolution Library Creation. Methods in Molecular Biology, vol 1179. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1053-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1053-3_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1052-6

  • Online ISBN: 978-1-4939-1053-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics