Advertisement

Application of RNAi Technology and Fluorescent Protein Markers to Study Membrane Traffic in C. elegans

  • Jachen A. Solinger
  • Dmitry Poteryaev
  • Anne Spang
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1174)

Abstract

RNA interference (RNAi) is a powerful tool to study the intracellular membrane transport and membrane organelle behavior in the nematode Caenorhabditis elegans. This model organism has gained popularity in the trafficking field because of its relative simplicity, yet being multicellular. C. elegans is fully sequenced and has an annotated genome, it is easy to maintain, and a growing number of transgenic strains bearing markers for different membrane compartments are available. C. elegans is particularly well suited for protein downregulation by RNAi because of the simple but efficient methods of dsRNA delivery. The phenomenon of systemic RNAi in the worm further facilitates this approach. In this chapter we describe methods and applications of RNAi in the field of membrane traffic. We summarize the fluorescent markers used as a readout for the effects of gene knockdown in different cells and tissues and give details for data acquisition and analysis.

Key words

C. elegans Confocal microscopy Embryo Endocytosis Endoplasmic reticulum GFP Membrane dynamics Membrane trafficking Protein transport RNAi 

Notes

Acknowledgements

Protocols were based on many works published by members of the worm research community. We apologize for any omissions in reference. We would like to acknowledge funding by the Biozentrum of the University of Basel and the Swiss National Science Foundation.

References

  1. 1.
    Dickinson DJ, Ward JD, Reiner DJ, Goldstein B (2013) Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods 10:1028–1034PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Robert VJP (2012) Engineering the Caenorhabditis elegans genome by Mos1-induced transgene-instructed gene conversion. Methods Mol Biol 859:189–201PubMedCrossRefGoogle Scholar
  3. 3.
    Timmons L (2006) Delivery methods for RNA interference in C. elegans. Methods Mol Biol 351:119–125PubMedGoogle Scholar
  4. 4.
    Ohkumo T, Masutani C, Eki T, Hanaoka F (2008) Use of RNAi in C. elegans. Methods Mol Biol 442:129–137PubMedCrossRefGoogle Scholar
  5. 5.
    Poteryaev D, Squirrell JM, Campbell JM, White JG, Spang A (2005) Involvement of the actin cytoskeleton and homotypic membrane fusion in ER dynamics in Caenorhabditis elegans. Mol Biol Cell 16:2139–2153PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Lehner BB, Tischler JJ, Fraser AGA (2005) RNAi screens in Caenorhabditis elegans in a 96-well liquid format and their application to the systematic identification of genetic interactions. CORD Conf Proc 1:1617–1620Google Scholar
  7. 7.
    Isik M, Berezikov E (2013) Biolistic transformation of Caenorhabditis elegans. Methods Mol Biol 940:77–86PubMedGoogle Scholar
  8. 8.
    Fares H, Grant B (2002) Deciphering endocytosis in Caenorhabditis elegans. Traffic 3:11–19PubMedCrossRefGoogle Scholar
  9. 9.
    Koushika SP, Nonet ML (2000) Sorting and transport in C. elegans: a model system with a sequenced genome. Curr Opin Cell Biol 12:517–523PubMedCrossRefGoogle Scholar
  10. 10.
    Grant B, Hirsh D (1999) Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. Mol Biol Cell 10:4311–4326PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Chen C-H, Schweinsberg PJ, Vashist S, Mareiniss DP, Lambie EJ, Grant BD (2006) RAB-10 is required for endocytic recycling in the Caenorhabditis elegans intestine. Mol Biol Cell 17:1286–1297PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Liégeois S, Benedetto A, Garnier J-M, Schwab Y, Labouesse M (2006) The V0-ATPase mediates apical secretion of exosomes containing Hedgehog-related proteins in Caenorhabditis elegans. J Cell Biol 173:949–961PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Skop AR, Bergmann D, Mohler WA, White JG (2001) Completion of cytokinesis in C. elegans requires a brefeldin A-sensitive membrane accumulation at the cleavage furrow apex. Curr Biol 11:735–746PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Kim E, Sun L, Gabel CV, Fang-Yen C (2013) Long-term imaging of Caenorhabditis elegans using nanoparticle-mediated immobilization. PLoS One 8:e53419PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Ackema KB, Sauder U, Solinger JA, Spang A (2013) The ArfGEF GBF-1 is required for ER structure, secretion and endocytic transport in C. elegans. PLoS ONE 8:e67076PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Paupard MC, Miller A, Grant B, Hirsh D, Hall DH (2001) Immuno-EM localization of GFP-tagged yolk proteins in C. elegans using microwave fixation. J Histochem Cytochem 49:949–956PubMedCrossRefGoogle Scholar
  17. 17.
    Witte K, Schuh AL, Hegermann J et al (2011) TFG-1 function in protein secretion and oncogenesis. Nat Cell Biol 13:550–558PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Grant B, Zhang Y, Paupard MC, Lin SX, Hall DH, Hirsh D (2001) Evidence that RME-1, a conserved C. elegans EH-domain protein, functions in endocytic recycling. Nat Cell Biol 3:573–579PubMedCrossRefGoogle Scholar
  19. 19.
    Calixto A, Chelur D, Topalidou I, Chen X, Chalfie M (2010) Enhanced neuronal RNAi in C. elegans using SID-1. Nat Methods 7:554–559PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Ahringer J (2006) Reverse genetics. WormBook.1.47.1Google Scholar
  21. 21.
    O’Connell KF, Golden A (2014) Confocal imaging of the microtubule cytoskeleton in C. elegans embryos and germ cells. Methods Mol Biol 1075:257–272PubMedCrossRefGoogle Scholar
  22. 22.
    Boyd L, Hajjar C, O’Connell K (2011) Time-lapse microscopy of early embryogenesis in Caenorhabditis elegans. J Vis Exp. doi: 10.3791/2852 Google Scholar
  23. 23.
    Halder G, Paddock SW (1999) Presentation of confocal images. Methods Mol Biol 122:373–384PubMedGoogle Scholar
  24. 24.
    Lamitina T (2006) Functional genomic approaches in C. elegans. Methods Mol Biol 35:127–138Google Scholar
  25. 25.
    Hutter H (2006) Fluorescent reporter methods. Methods Mol Biol 351:155–173PubMedGoogle Scholar
  26. 26.
    Hermann GJ, Schroeder LK, Hieb CA et al (2005) Genetic analysis of lysosomal trafficking in Caenorhabditis elegans. Mol Biol Cell 16:3273–3288PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Fares H, Greenwald I (2001) Regulation of endocytosis by CUP-5, the Caenorhabditis elegans mucolipin-1 homolog. Nat Genet 28:64–68PubMedGoogle Scholar
  28. 28.
    Frand AR, Russel S, Ruvkun G (2005) Functional genomic analysis of C. elegans molting. PLoS Biol 3:e312PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Nicot A-S, Fares H, Payrastre B et al (2006) The phosphoinositide kinase PIKfyve/Fab1p regulates terminal lysosome maturation in Caenorhabditis elegans. Mol Biol Cell 17:3062–3074PubMedCentralPubMedGoogle Scholar
  30. 30.
    Fares H, Greenwald I (2001) Genetic analysis of endocytosis in Caenorhabditis elegans: coelomocyte uptake defective mutants. Genetics 159:133–145PubMedCentralPubMedGoogle Scholar
  31. 31.
    Rappleye CA, Paredez AR, Smith CW, McDonald KL, Aroian RV (1999) The coronin-like protein POD-1 is required for anterior-posterior axis formation and cellular architecture in the nematode Caenorhabditis elegans. Genes Dev 13:2838–2851PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Poteryaev D, Spang A (2005) A role of SAND-family proteins in endocytosis. Biochem Soc Trans 33:606–608PubMedCrossRefGoogle Scholar
  33. 33.
    Audhya A, Hyndman F, McLeod IX et al (2005) A complex containing the Sm protein CAR-1 and the RNA helicase CGH-1 is required for embryonic cytokinesis in Caenorhabditis elegans. J Cell Biol 171:267–279PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Sato K, Sato M, Audhya A, Oegema K, Schweinsberg P, Grant BD (2006) Dynamic regulation of caveolin-1 trafficking in the germ line and embryo of Caenorhabditis elegans. Mol Biol Cell 17:3085–3094PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Sato M, Sato K, Liou W, Pant S, Harada A, Grant BD (2008) Regulation of endocytic recycling by C. elegans Rab35 and its regulator RME-4, a coated-pit protein. EMBO J 27:1183–1196PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Franz C, Askjaer P, Antonin W et al (2005) Nup155 regulates nuclear envelope and nuclear pore complex formation in nematodes and vertebrates. EMBO J 24:3519–3531PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Kimura K, Kimura A (2012) Rab6 is required for the exocytosis of cortical granules and the recruitment of separase to the granules during the oocyte-to-embryo transition in Caenorhabditis elegans. J Cell Sci 125:5897–5905PubMedCrossRefGoogle Scholar
  38. 38.
    Patton A, Knuth S, Schaheen B, Dang H, Greenwald I, Fares H (2005) Endocytosis function of a ligand-gated ion channel homolog in Caenorhabditis elegans. Curr Biol 15:1045–1050PubMedCrossRefGoogle Scholar
  39. 39.
    Zhang Y, Grant B, Hirsh D (2001) RME-8, a conserved J-domain protein, is required for endocytosis in Caenorhabditis elegans. Mol Biol Cell 12:2011–2021PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Treusch S, Knuth S, Slaugenhaupt SA, Goldin E, Grant BD, Fares H (2004) Caenorhabditis elegans functional orthologue of human protein h-mucolipin-1 is required for lysosome biogenesis. Proc Natl Acad Sci U S A 101:4483–4488PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Dang H, Li Z, Skolnik EY, Fares H (2004) Disease-related myotubularins function in endocytic traffic in Caenorhabditis elegans. Mol Biol Cell 15:189–196PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Sato K, Ernstrom GG, Watanabe S et al (2009) Differential requirements for clathrin in receptor-mediated endocytosis and maintenance of synaptic vesicle pools. Proc Natl Acad Sci U S A 106:1139–1144PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Shi A, Pant S, Balklava Z, Chen CC-H, Figueroa V, Grant BD (2007) A novel requirement for C. elegans Alix/ALX-1 in RME-1-mediated membrane transport. Curr Biol 17:1913–1924PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Shi A, Liu O, Koenig S, Banerjee R, Chen CC-H, Eimer S, Grant BD (2012) RAB-10-GTPase-mediated regulation of endosomal phosphatidylinositol-4,5-bisphosphate. Proc Natl Acad Sci U S A 109:2306–2315CrossRefGoogle Scholar
  45. 45.
    Shi A, Chen CC-H, Banerjee R et al (2010) EHBP-1 functions with RAB-10 during endocytic recycling in Caenorhabditis elegans. Mol Biol Cell 21:2930–2943PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Mahoney TR, Liu Q, Itoh T et al (2006) Regulation of synaptic transmission by RAB-3 and RAB-27 in Caenorhabditis elegans. Mol Biol Cell 17:2617–2625PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Kubota Y, Sano M, Goda S, Suzuki N, Nishiwaki K (2006) The conserved oligomeric Golgi complex acts in organ morphogenesis via glycosylation of an ADAM protease in C. elegans. Development 133:263–273PubMedCrossRefGoogle Scholar
  48. 48.
    Labrousse AM, Zappaterra MD, Rube DA, van der Bliek AM (1999) C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol Cell 4:815–826PubMedCrossRefGoogle Scholar
  49. 49.
    Li Z, Lu N, He X, Zhou Z (2013) Monitoring the clearance of apoptotic and necrotic cells in the nematode Caenorhabditis elegans. Methods Mol Biol 1004:183–202PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Chen D, Jian Y, Liu X et al (2013) Clathrin and AP2 are required for phagocytic receptor-mediated apoptotic cell clearance in Caenorhabditis elegans. PLoS Genet 9:e1003517PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Kinchen JM, Doukoumetzidis K, Almendinger J et al (2008) A pathway for phagosome maturation during engulfment of apoptotic cells. Nat Cell Biol 10:556–566PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Huang J, Wang H, Chen Y, Wang X, Zhang H (2012) Residual body removal during spermatogenesis in C. elegans requires genes that mediate cell corpse clearance. Development 139:4613–4622PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Lu N, Shen Q, Mahoney TR, Neukomm LJ, Wang Y, Zhou Z (2012) Two PI 3-kinases and one PI 3-phosphatase together establish the cyclic waves of phagosomal PtdIns(3)P critical for the degradation of apoptotic cells. PLoS Biol 10:e1001245PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Guo P, Hu T, Zhang J, Jiang S, Wang X (2010) Sequential action of Caenorhabditis elegans Rab GTPases regulates phagolysosome formation during apoptotic cell degradation. Proc Natl Acad Sci U S A 107:18016–18021PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Pant S, Sharma M, Patel K, Caplan S, Carr CM, Grant BD (2009) AMPH-1/Amphiphysin/Bin1 functions with RME-1/Ehd1 in endocytic recycling. Nat Cell Biol 11:1399–1410PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Roudier N, Lefebvre C, Legouis R (2005) CeVPS-27 is an endosomal protein required for the molting and the endocytic trafficking of the low-density lipoprotein receptor-related protein 1 in Caenorhabditis elegans. Traffic 6:695–705PubMedCrossRefGoogle Scholar
  57. 57.
    Chen D, Xiao H, Zhang K (2010) Retromer is required for apoptotic cell clearance by phagocytic receptor recycling. Science 327:1261–1264PubMedCrossRefGoogle Scholar
  58. 58.
    Meléndez A, Tallóczy Z, Seaman M, Eskelinen E-L, Hall DH, Levine B (2003) Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301:1387–1391PubMedCrossRefGoogle Scholar
  59. 59.
    Larsen MK, Tuck S, Faergeman NJ, Knudsen J (2006) MAA-1, a novel acyl-CoA-binding protein involved in endosomal vesicle transport in Caenorhabditis elegans. Mol Biol Cell 17:4318–4329PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Nakae I, Fujino T, Kobayashi T et al (2010) The arf-like GTPase Arl8 mediates delivery of endocytosed macromolecules to lysosomes in Caenorhabditis elegans. Mol Biol Cell 21:2434–2442PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Matyash V, Geier C, Henske A et al (2001) Distribution and transport of cholesterol in Caenorhabditis elegans. Mol Biol Cell 12:1725–1736PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jachen A. Solinger
    • 1
  • Dmitry Poteryaev
    • 1
  • Anne Spang
    • 1
  1. 1.BiozentrumUniversity of BaselBaselSwitzerland

Personalised recommendations