The Greatwall–PP2A Axis in Cell Cycle Control

Part of the Methods in Molecular Biology book series (MIMB, volume 1170)


Cell cycle progression is largely controlled by reversible protein phosphorylation mediated by cyclically activated kinases and phosphatases. It has long been known that cyclin B–Cdk1 activation triggers mitotic entry, and the enzymatic network controlling its activation and inactivation has been well characterized. Much more recently protein phosphatase 2A (PP2A) together with its B55 regulatory subunit has been recognized as the major activity dephosphorylating Cdk1 targets. Moreover, PP2A-B55 activity is high in late M phase and interphase, but low at mitotic entry. A series of discoveries in the fly and frog model systems have uncovered the molecular mechanism mediating this regulation. The Greatwall (Gwl) kinase activates endosulfines, which become specific inhibitors of PP2A-B55. Cdk1-dependent activation of Gwl at mitotic entry leads to PP2A-B55 downregulation, which synergizes with Cdk1 activation to promote the phosphorylated states of several mitotic substrates. Much less is known on the mechanisms inactivating Gwl and endosulfines at mitotic exit. Recent reports show the importance of spatiotemporal regulation of Gwl, endosulfines, and PP2A-B55 for cell cycle progression. The various systems and cell types differ in their dependence on the Gwl–PP2A axis for cell cycle progression. Moreover, this pathway also regulates gene expression in yeast, and this function could be conserved in metazoans.

Key words

Cell cycle Mitosis Mitotic exit Greatwall PP2A B55 Endosulfine Cdk1 



Work on the Gwl–PP2A axis in V.A.’s lab is supported by the Canadian Institutes of Health Research (CIHR). V.A. also holds a New Investigator Award from the CIHR. P.W. holds a studentship from the Fonds de recherche du Québec—Santé (FRQ-S). IRIC is supported in part by the Canadian Center of Excellence in Commercialization and Research, the Canada Foundation for Innovation, and the FRQ-S. Work in M.M.’s laboratory was funded by grants from Bayer Pharma AG, Fundación Ramón Areces, MINECO (SAF2012-38215), the OncoCycle Programme (S2010/BMD-2470) from the Comunidad de Madrid, and the European Union Seventh Framework Programme (MitoSys project; HEALTH-F5-2010-241548).


  1. 1.
    Morgan DO (2007) The cell cycle: principles of control, Primers in Biology. New Science, LondonGoogle Scholar
  2. 2.
    Lindqvist A, Rodriguez-Bravo V, Medema RH (2009) The decision to enter mitosis: feedback and redundancy in the mitotic entry network. J Cell Biol 185(2):193–202PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Dessev G, Iovcheva-Dessev C, Bischoff JR, Beach D, Goldman R (1991) A complex containing p34cdc2 and cyclin B phosphorylates the nuclear lamin and disassembles nuclei of clam oocytes in vitro. J Cell Biol 112(4):523–533PubMedCrossRefGoogle Scholar
  4. 4.
    Kimura K, Hirano M, Kobayashi R, Hirano T (1998) Phosphorylation and activation of 13S condensin by Cdc2 in vitro. Science 282(5388):487–490PubMedCrossRefGoogle Scholar
  5. 5.
    Glotzer M (2009) The 3Ms of central spindle assembly: microtubules, motors and MAPs. Nat Rev Mol Cell Biol 10(1):9–20PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T (1983) Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33(2):389–396PubMedCrossRefGoogle Scholar
  7. 7.
    Stern B, Nurse P (1996) A quantitative model for the cdc2 control of S phase and mitosis in fission yeast. Trends Genet 12(9):345–350PubMedCrossRefGoogle Scholar
  8. 8.
    Bloom J, Cross FR (2007) Multiple levels of cyclin specificity in cell-cycle control. Nat Rev Mol Cell Biol 8(2):149–160PubMedCrossRefGoogle Scholar
  9. 9.
    Visintin R, Craig K, Hwang ES, Prinz S, Tyers M, Amon A (1998) The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol Cell 2(6):709–718PubMedCrossRefGoogle Scholar
  10. 10.
    Bardin AJ, Amon A (2001) Men and sin: what’s the difference? Nat Rev Mol Cell Biol 2(11):815–826PubMedCrossRefGoogle Scholar
  11. 11.
    Mocciaro A, Schiebel E (2010) Cdc14: a highly conserved family of phosphatases with non-conserved functions? J Cell Sci 123 (Pt 17):2867–2876Google Scholar
  12. 12.
    Lambrecht C, Haesen D, Sents W, Ivanova E, Janssens V (2013) Structure, regulation, and pharmacological modulation of PP2A phosphatases. Methods Mol Biol 1053:283–305PubMedCrossRefGoogle Scholar
  13. 13.
    Mayer-Jaekel RE, Ohkura H, Ferrigno P, Andjelkovic N, Shiomi K, Uemura T, Glover DM, Hemmings BA (1994) Drosophila mutants in the 55 kDa regulatory subunit of protein phosphatase 2A show strongly reduced ability to dephosphorylate substrates of p34cdc2. J Cell Sci 107(Pt 9):2609–2616PubMedGoogle Scholar
  14. 14.
    Mayer-Jaekel RE, Ohkura H, Gomes R, Sunkel CE, Baumgartner S, Hemmings BA, Glover DM (1993) The 55 kd regulatory subunit of Drosophila protein phosphatase 2A is required for anaphase. Cell 72(4):621–633PubMedCrossRefGoogle Scholar
  15. 15.
    Ferrigno P, Langan TA, Cohen P (1993) Protein phosphatase 2A1 is the major enzyme in vertebrate cell extracts that dephosphorylates several physiological substrates for cyclin-dependent protein kinases. Mol Biol Cell 4(7):669–677PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Lee TH, Turck C, Kirschner MW (1994) Inhibition of cdc2 activation by INH/PP2A. Mol Biol Cell 5(3):323–338PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Sontag E, Nunbhakdi-Craig V, Bloom GS, Mumby MC (1995) A novel pool of protein phosphatase 2A is associated with microtubules and is regulated during the cell cycle. J Cell Biol 128(6):1131–1144PubMedCrossRefGoogle Scholar
  18. 18.
    Mochida S, Ikeo S, Gannon J, Hunt T (2009) Regulated activity of PP2A-B55 delta is crucial for controlling entry into and exit from mitosis in Xenopus egg extracts. EMBO J 28(18):2777–2785PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Castilho PV, Williams BC, Mochida S, Zhao Y, Goldberg ML (2009) The M phase kinase Greatwall (Gwl) promotes inactivation of PP2A/B55delta, a phosphatase directed against CDK phosphosites. Mol Biol Cell 20(22):4777–4789PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Schmitz MH, Held M, Janssens V, Hutchins JR, Hudecz O, Ivanova E, Goris J, Trinkle-Mulcahy L, Lamond AI, Poser I, Hyman AA, Mechtler K, Peters JM, Gerlich DW (2010) Live-cell imaging RNAi screen identifies PP2A-B55alpha and importin-beta1 as key mitotic exit regulators in human cells. Nat Cell Biol 12(9):886–893PubMedCrossRefGoogle Scholar
  21. 21.
    Manchado E, Guillamot M, de Carcer G, Eguren M, Trickey M, Garcia-Higuera I, Moreno S, Yamano H, Canamero M, Malumbres M (2010) Targeting mitotic exit leads to tumor regression in vivo: modulation by Cdk1, Mastl, and the PP2A/B55alpha, delta phosphatase. Cancer Cell 18(6):641–654PubMedCrossRefGoogle Scholar
  22. 22.
    Wurzenberger C, Gerlich DW (2011) Phosphatases: providing safe passage through mitotic exit. Nat Rev Mol Cell Biol 12(8):469–482PubMedCrossRefGoogle Scholar
  23. 23.
    Rossio V, Yoshida S (2011) Spatial regulation of Cdc55-PP2A by Zds1/Zds2 controls mitotic entry and mitotic exit in budding yeast. J Cell Biol 193(3):445–454PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Queralt E, Lehane C, Novak B, Uhlmann F (2006) Downregulation of PP2A(Cdc55) phosphatase by separase initiates mitotic exit in budding yeast. Cell 125(4):719–732PubMedCrossRefGoogle Scholar
  25. 25.
    Queralt E, Uhlmann F (2008) Separase cooperates with Zds1 and Zds2 to activate Cdc14 phosphatase in early anaphase. J Cell Biol 182(5):873–883PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Wicky S, Tjandra H, Schieltz D, Yates J 3rd, Kellogg DR (2010) The Zds proteins control entry into mitosis and target protein phosphatase 2A to the Cdc25 phosphatase. Mol Biol Cell 22(1):20–32PubMedCrossRefGoogle Scholar
  27. 27.
    White-Cooper H, Carmena M, Gonzalez C, Glover DM (1996) Mutations in new cell cycle genes that fail to complement a multiply mutant third chromosome of Drosophila. Genetics 144(3):1097–1111PubMedCrossRefGoogle Scholar
  28. 28.
    Yu J, Fleming SL, Williams B, Williams EV, Li Z, Somma P, Rieder CL, Goldberg ML (2004) Greatwall kinase: a nuclear protein required for proper chromosome condensation and mitotic progression in Drosophila. J Cell Biol 164(4):487–492PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Archambault V, Zhao X, White-Cooper H, Carpenter AT, Glover DM (2007) Mutations in Drosophila Greatwall/Scant reveal its roles in mitosis and meiosis and interdependence with polo kinase. PLoS Genet 3(11):e200PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Bettencourt-Dias M, Giet R, Sinka R, Mazumdar A, Lock WG, Balloux F, Zafiropoulos PJ, Yamaguchi S, Winter S, Carthew RW, Cooper M, Jones D, Frenz L, Glover DM (2004) Genome-wide survey of protein kinases required for cell cycle progression. Nature 432(7020):980–987PubMedCrossRefGoogle Scholar
  31. 31.
    Yu J, Zhao Y, Li Z, Galas S, Goldberg ML (2006) Greatwall kinase participates in the Cdc2 autoregulatory loop in Xenopus egg extracts. Mol Cell 22(1):83–91PubMedCrossRefGoogle Scholar
  32. 32.
    Vigneron S, Brioudes E, Burgess A, Labbe JC, Lorca T, Castro A (2009) Greatwall maintains mitosis through regulation of PP2A. EMBO J 28(18):2786–2793PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Mochida S, Maslen SL, Skehel M, Hunt T (2010) Greatwall phosphorylates an inhibitor of protein phosphatase 2A that is essential for mitosis. Science 330(6011):1670–1673PubMedCrossRefGoogle Scholar
  34. 34.
    Gharbi-Ayachi A, Labbe JC, Burgess A, Vigneron S, Strub JM, Brioudes E, Van-Dorsselaer A, Castro A, Lorca T (2010) The substrate of Greatwall kinase, Arpp19, controls mitosis by inhibiting protein phosphatase 2A. Science 330(6011):1673–1677PubMedCrossRefGoogle Scholar
  35. 35.
    Lorca T, Castro A (2012) The Greatwall kinase: a new pathway in the control of the cell cycle. Oncogene 32(5):537–543PubMedCrossRefGoogle Scholar
  36. 36.
    Von Stetina JR, Tranguch S, Dey SK, Lee LA, Cha B, Drummond-Barbosa D (2008) alpha-Endosulfine is a conserved protein required for oocyte meiotic maturation in Drosophila. Development 135(22):3697–3706CrossRefGoogle Scholar
  37. 37.
    Rangone H, Wegel E, Gatt MK, Yeung E, Flowers A, Debski J, Dadlez M, Janssens V, Carpenter AT, Glover DM (2011) Suppression of scant identifies Endos as a substrate of greatwall kinase and a negative regulator of protein phosphatase 2A in mitosis. PLoS Genet 7(8):e1002225PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Wang P, Pinson X, Archambault V (2011) PP2A-twins is antagonized by greatwall and collaborates with polo for cell cycle progression and centrosome attachment to nuclei in drosophila embryos. PLoS Genet 7(8):e1002227PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Burgess A, Vigneron S, Brioudes E, Labbe JC, Lorca T, Castro A (2010) Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin B-Cdc2/PP2A balance. Proc Natl Acad Sci U S A 107(28):12564–12569PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Voets E, Wolthuis RM (2010) MASTL is the human orthologue of Greatwall kinase that facilitates mitotic entry, anaphase and cytokinesis. Cell Cycle 9(17):3591–3601PubMedCrossRefGoogle Scholar
  41. 41.
    Alvarez-Fernandez M, Sanchez-Martinez R, Sanz-Castillo B, Gan PP, Sanz-Flores M, Trakala M, Ruiz-Torres M, Lorca T, Castro A, Malumbres M (2013) Greatwall is essential to prevent mitotic collapse after nuclear envelope breakdown in mammals. Proc Natl Acad Sci U S A 110(43):17374–17379PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Peng A, Yamamoto TM, Goldberg ML, Maller JL (2010) A novel role for greatwall kinase in recovery from DNA damage. Cell Cycle 9(21):4364–4369PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Peng A, Wang L, Fisher LA (2011) Greatwall and Polo-like kinase 1 coordinate to promote checkpoint recovery. J Biol Chem 286(33):28996–29004PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Mollinari C, Kleman JP, Jiang W, Schoehn G, Hunter T, Margolis RL (2002) PRC1 is a microtubule binding and bundling protein essential to maintain the mitotic spindle midzone. J Cell Biol 157(7):1175–1186PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Cundell MJ, Bastos RN, Zhang T, Holder J, Gruneberg U, Novak B, Barr FA (2013) The BEG (PP2A-B55/ENSA/Greatwall) pathway ensures cytokinesis follows chromosome separation. Mol Cell 52(3):393–405PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Hara M, Abe Y, Tanaka T, Yamamoto T, Okumura E, Kishimoto T (2012) Greatwall kinase and cyclin B-Cdk1 are both critical constituents of M-phase-promoting factor. Nat Commun 3:1059PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Kim MY, Bucciarelli E, Morton DG, Williams BC, Blake-Hodek K, Pellacani C, Von Stetina JR, Hu X, Somma MP, Drummond-Barbosa D, Goldberg ML (2012) Bypassing the Greatwall-endosulfine pathway: plasticity of a pivotal cell-cycle regulatory module in Drosophila melanogaster and Caenorhabditis elegans. Genetics 191(4):1181–1197PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Li YH, Kang H, Xu YN, Heo YT, Cui XS, Kim NH, Oh JS (2013) Greatwall kinase is required for meiotic maturation in porcine oocytes. Biol Reprod 89(3):53PubMedCrossRefGoogle Scholar
  49. 49.
    Juanes MA, Khoueiry R, Kupka T, Castro A, Mudrak I, Ogris E, Lorca T, Piatti S (2013) Budding yeast greatwall and endosulfines control activity and spatial regulation of PP2A(Cdc55) for timely mitotic progression. PLoS Genet 9(7):e1003575PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Vigneron S, Gharbi-Ayachi A, Raymond AA, Burgess A, Labbe JC, Labesse G, Monsarrat B, Lorca T, Castro A (2011) Characterization of the mechanisms controlling Greatwall activity. Mol Cell Biol 31(11):2262–2275PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Blake-Hodek KA, Williams BC, Zhao Y, Castilho PV, Chen W, Mao Y, Yamamoto TM, Goldberg ML (2012) Determinants for activation of the atypical AGC kinase greatwall during M phase entry. Mol Cell Biol 32(8):1337–1353PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Gavet O, Pines J (2010) Activation of cyclin B1-Cdk1 synchronizes events in the nucleus and the cytoplasm at mitosis. J Cell Biol 189(2):247–259PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Gavet O, Pines J (2010) Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. Dev Cell 18(4):533–543PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Santos SD, Wollman R, Meyer T, Ferrell JE Jr (2012) Spatial positive feedback at the onset of mitosis. Cell 149(7):1500–1513PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Janssens V, Goris J (2001) Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J 353(Pt 3):417–439PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Wang P, Galan JA, Normandin K, Bonneil E, Hickson GR, Roux PP, Thibault P, Archambault V (2013) Cell cycle regulation of Greatwall kinase nuclear localization facilitates mitotic progression. J Cell Biol 202(2):277–293PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Pedruzzi I, Dubouloz F, Cameroni E, Wanke V, Roosen J, Winderickx J, De Virgilio C (2003) TOR and PKA signaling pathways converge on the protein kinase Rim15 to control entry into G0. Mol Cell 12(6):1607–1613PubMedCrossRefGoogle Scholar
  58. 58.
    Bontron S, Jaquenoud M, Vaga S, Talarek N, Bodenmiller B, Aebersold R, De Virgilio C (2013) Yeast endosulfines control entry into quiescence and chronological life span by inhibiting protein phosphatase 2A. Cell Rep 3(1):16–22PubMedCrossRefGoogle Scholar
  59. 59.
    Talarek N, Cameroni E, Jaquenoud M, Luo X, Bontron S, Lippman S, Devgan G, Snyder M, Broach JR, De Virgilio C (2010) Initiation of the TORC1-regulated G0 program requires Igo1/2, which license specific mRNAs to evade degradation via the 5'-3' mRNA decay pathway. Mol Cell 38(3):345–355PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Drummond-Barbosa D, Spradling AC (2004) Alpha-endosulfine, a potential regulator of insulin secretion, is required for adult tissue growth control in Drosophila. Dev Biol 266(2):310–321PubMedCrossRefGoogle Scholar
  61. 61.
    Bataille D (2000) Endosulfines: novel regulators of insulin secretion. Drug News Perspect 13(8):453–462PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Biochemistry, Institut de recherche en immunologie et en cancérologieUniversité de MontréalMontréalCanada
  2. 2.Spanish National Cancer Research Centre (CNIO)MadridSpain

Personalised recommendations