Linking Chromosome Duplication and Segregation via Sister Chromatid Cohesion

Part of the Methods in Molecular Biology book series (MIMB, volume 1170)

Abstract

DNA replication during S phase generates two identical copies of each chromosome. Each chromosome is destined for a daughter cell, but each daughter must receive one and only one copy of each chromosome. To ensure accurate chromosome segregation, eukaryotic cells are equipped with a mechanism to pair the chromosomes during chromosome duplication and hold the pairs until a bi-oriented mitotic spindle is formed and the pairs are pulled apart. This mechanism is known as sister chromatid cohesion, and its actions span the entire cell cycle. During G1, before DNA is copied during S phase, proteins termed cohesins are loaded onto DNA. Paired chromosomes are held together through G2 phase, and finally the cohesins are dismantled during mitosis. The processes governing sister chromatid cohesion ensure that newly replicated sisters are held together from the moment they are generated to the metaphase–anaphase transition, when sisters separate.

Key words

Sister chromatid cohesion SMC proteins Cohesin Adherin/kollerin DNA replication Cohesinopathy Replication fork Genomic integrity S phase Chromosome segregation 

References

  1. 1.
    Hirano T (2002) The ABCs of SMC proteins: two-armed ATPases for chromosome condensation, cohesion, and repair. Genes Dev 16(4): 399–414PubMedGoogle Scholar
  2. 2.
    Haering CH, Lowe J, Hochwagen A, Nasmyth K (2002) Molecular architecture of SMC proteins and the yeast cohesin complex. Mol Cell 9(4):773–788PubMedGoogle Scholar
  3. 3.
    Hirano T, Mitchison TJ (1994) A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro. Cell 79(3): 449–458PubMedGoogle Scholar
  4. 4.
    Hirano T, Kobayashi R, Hirano M (1997) Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein. Cell 89(4):511–521PubMedGoogle Scholar
  5. 5.
    Fousteri MI, Lehmann AR (2000) A novel SMC protein complex in Schizosaccharomyces pombe contains the Rad18 DNA repair protein. EMBO J 19(7):1691–1702PubMedCentralPubMedGoogle Scholar
  6. 6.
    Taylor EM, Moghraby JS, Lees JH, Smit B, Moens PB, Lehmann AR (2001) Characterization of a novel human SMC heterodimer homologous to the Schizosaccharomyces pombe Rad18/Spr18 complex. Mol Biol Cell 12(6): 1583–1594PubMedCentralPubMedGoogle Scholar
  7. 7.
    Verkade HM, Bugg SJ, Lindsay HD, Carr AM, O’Connell MJ (1999) Rad18 is required for DNA repair and checkpoint responses in fission yeast. Mol Biol Cell 10(9):2905–2918PubMedCentralPubMedGoogle Scholar
  8. 8.
    Usui T, Ohta T, Oshiumi H, Tomizawa J, Ogawa H, Ogawa T (1998) Complex formation and functional versatility of Mre11 of budding yeast in recombination. Cell 95(5): 705–716PubMedGoogle Scholar
  9. 9.
    Cobbe N, Heck MM (2000) Review: SMCs in the world of chromosome biology—from prokaryotes to higher eukaryotes. J Struct Biol 129(2–3):123–143PubMedGoogle Scholar
  10. 10.
    Hirano M, Hirano T (2006) Opening closed arms: long-distance activation of SMC ATPase by hinge-DNA interactions. Mol Cell 21(2): 175–186PubMedGoogle Scholar
  11. 11.
    Melby TE, Ciampaglio CN, Briscoe G, Erickson HP (1998) The symmetrical structure of structural maintenance of chromosomes (SMC) and MukB proteins: long, antiparallel coiled coils, folded at a flexible hinge. J Cell Biol 142(6):1595–1604PubMedCentralPubMedGoogle Scholar
  12. 12.
    Furuya K, Takahashi K, Yanagida M (1998) Faithful anaphase is ensured by Mis4, a sister chromatid cohesion molecule required in S phase and not destroyed in G1 phase. Genes Dev 12(21):3408–3418PubMedCentralPubMedGoogle Scholar
  13. 13.
    Haering CH, Schoffnegger D, Nishino T, Helmhart W, Nasmyth K, Lowe J (2004) Structure and stability of cohesin’s Smc1-kleisin interaction. Mol Cell 15(6):951–964PubMedGoogle Scholar
  14. 14.
    Schleiffer A, Kaitna S, Maurer-Stroh S, Glotzer M, Nasmyth K, Eisenhaber F (2003) Kleisins: a superfamily of bacterial and eukaryotic SMC protein partners. Mol Cell 11(3):571–575PubMedGoogle Scholar
  15. 15.
    Parelho V, Hadjur S, Spivakov M, Leleu M, Sauer S, Gregson HC, Jarmuz A, Canzonetta C, Webster Z, Nesterova T, Cobb BS, Yokomori K, Dillon N, Aragon L, Fisher AG, Merkenschlager M (2008) Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 132(3):422–433PubMedGoogle Scholar
  16. 16.
    Wendt KS, Yoshida K, Itoh T, Bando M, Koch B, Schirghuber E, Tsutsumi S, Nagae G, Ishihara K, Mishiro T, Yahata K, Imamoto F, Aburatani H, Nakao M, Imamoto N, Maeshima K, Shirahige K, Peters JM (2008) Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451(7180):796–801PubMedGoogle Scholar
  17. 17.
    Klein F, Mahr P, Galova M, Buonomo SB, Michaelis C, Nairz K, Nasmyth K (1999) A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell 98(1):91–103PubMedGoogle Scholar
  18. 18.
    Toth A, Ciosk R, Uhlmann F, Galova M, Schleiffer A, Nasmyth K (1999) Yeast cohesin complex requires a conserved protein, Eco1p (Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev 13(3):320–333Google Scholar
  19. 19.
    Losada A, Yokochi T, Kobayashi R, Hirano T (2000) Identification and characterization of SA/Scc3p subunits in the Xenopus and human cohesin complexes. J Cell Biol 150(3):405–416PubMedCentralPubMedGoogle Scholar
  20. 20.
    Kurlandzka A, Rytka J, Gromadka R, Murawski M (1995) A new essential gene located on Saccharomyces cerevisiae chromosome IX. Yeast 11(9):885–890PubMedGoogle Scholar
  21. 21.
    Zhang N, Jiang Y, Mao Q, Demeler B, Tao YJ, Pati D (2013) Characterization of the interaction between the cohesin subunits Rad21 and SA1/2. PLoS One 8(7):e69458PubMedCentralPubMedGoogle Scholar
  22. 22.
    Gruber S, Haering CH, Nasmyth K (2003) Chromosomal cohesin forms a ring. Cell 112(6):765–777PubMedGoogle Scholar
  23. 23.
    Nasmyth K (2011) Cohesin: a catenase with separate entry and exit gates? Nat Cell Biol 13(10):1170–1177PubMedGoogle Scholar
  24. 24.
    Huang CE, Milutinovich M, Koshland D (2005) Rings, bracelet or snaps: fashionable alternatives for Smc complexes. Philos Trans R Soc Lond B Biol Sci 360(1455):537–542PubMedCentralPubMedGoogle Scholar
  25. 25.
    Zhang N, Kuznetsov SG, Sharan SK, Li K, Rao PH, Pati D (2008) A handcuff model for the cohesin complex. J Cell Biol 183(6): 1019–1031PubMedCentralPubMedGoogle Scholar
  26. 26.
    Zhang N, Pati D (2009) Handcuff for sisters: a new model for sister chromatid cohesion. Cell Cycle 8(3):399–402PubMedCentralPubMedGoogle Scholar
  27. 27.
    Haering CH, Farcas AM, Arumugam P, Metson J, Nasmyth K (2008) The cohesin ring concatenates sister DNA molecules. Nature 454(7202):297–301PubMedGoogle Scholar
  28. 28.
    Ciosk R, Shirayama M, Shevchenko A, Tanaka T, Toth A, Shevchenko A, Nasmyth K (2000) Cohesin’s binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol Cell 5(2):243–254PubMedGoogle Scholar
  29. 29.
    Arumugam P, Gruber S, Tanaka K, Haering CH, Mechtler K, Nasmyth K (2003) ATP hydrolysis is required for cohesin’s association with chromosomes. Curr Biol 13(22):1941–1953PubMedGoogle Scholar
  30. 30.
    Weitzer S, Lehane C, Uhlmann F (2003) A model for ATP hydrolysis-dependent binding of cohesin to DNA. Curr Biol 13(22): 1930–1940PubMedGoogle Scholar
  31. 31.
    Hu B, Itoh T, Mishra A, Katoh Y, Chan KL, Upcher W, Godlee C, Roig MB, Shirahige K, Nasmyth K (2011) ATP hydrolysis is required for relocating cohesin from sites occupied by its Scc2/4 loading complex. Curr Biol 21(1): 12–24PubMedGoogle Scholar
  32. 32.
    Gruber S, Arumugam P, Katou Y, Kuglitsch D, Helmhart W, Shirahige K, Nasmyth K (2006) Evidence that loading of cohesin onto chromosomes involves opening of its SMC hinge. Cell 127(3):523–537PubMedGoogle Scholar
  33. 33.
    Anderson DE, Trujillo KM, Sung P, Erickson HP (2001) Structure of the Rad50 × Mre11 DNA repair complex from Saccharomyces cerevisiae by electron microscopy. J Biol Chem 276(40):37027–37033PubMedGoogle Scholar
  34. 34.
    Williams GJ, Lees-Miller SP, Tainer JA (2010) Mre11-Rad50-Nbs1 conformations and the control of sensing, signaling, and effector responses at DNA double-strand breaks. DNA Repair (Amst) 9(12):1299–1306Google Scholar
  35. 35.
    Hopfner KP, Karcher A, Shin DS, Craig L, Arthur LM, Carney JP, Tainer JA (2000) Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell 101(7):789–800PubMedGoogle Scholar
  36. 36.
    Mishra A, Hu B, Kurze A, Beckouet F, Farcas AM, Dixon SE, Katou Y, Khalid S, Shirahige K, Nasmyth K (2010) Both interaction surfaces within cohesin’s hinge domain are essential for its stable chromosomal association. Curr Biol 20(4):279–289PubMedCentralPubMedGoogle Scholar
  37. 37.
    Lengronne A, Katou Y, Mori S, Yokobayashi S, Kelly GP, Itoh T, Watanabe Y, Shirahige K, Uhlmann F (2004) Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 430(6999): 573–578PubMedCentralPubMedGoogle Scholar
  38. 38.
    Gillespie PJ, Hirano T (2004) Scc2 couples replication licensing to sister chromatid cohesion in Xenopus egg extracts. Curr Biol 14(17):1598–1603PubMedGoogle Scholar
  39. 39.
    Takahashi TS, Yiu P, Chou MF, Gygi S, Walter JC (2004) Recruitment of Xenopus Scc2 and cohesin to chromatin requires the pre-replication complex. Nat Cell Biol 6(10): 991–996PubMedGoogle Scholar
  40. 40.
    Fernius J, Marston AL (2009) Establishment of cohesion at the pericentromere by the Ctf19 kinetochore subcomplex and the replication fork-associated factor, Csm3. PLoS Genet 5(9):e1000629PubMedCentralPubMedGoogle Scholar
  41. 41.
    Takahashi TS, Basu A, Bermudez V, Hurwitz J, Walter JC (2008) Cdc7-Drf1 kinase links chromosome cohesion to the initiation of DNA replication in Xenopus egg extracts. Genes Dev 22(14):1894–1905PubMedCentralPubMedGoogle Scholar
  42. 42.
    Schmidt CK, Brookes N, Uhlmann F (2009) Conserved features of cohesin binding along fission yeast chromosomes. Genome Biol 10(5):R52PubMedCentralPubMedGoogle Scholar
  43. 43.
    Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA, van Berkum NL, Ebmeier CC, Goossens J, Rahl PB, Levine SS, Taatjes DJ, Dekker J, Young RA (2010) Mediator and cohesin connect gene expression and chromatin architecture. Nature 467(7314):430–435PubMedCentralPubMedGoogle Scholar
  44. 44.
    Schmidt D, Schwalie PC, Ross-Innes CS, Hurtado A, Brown GD, Carroll JS, Flicek P, Odom DT (2010) A CTCF-independent role for cohesin in tissue-specific transcription. Genome Res 20(5):578–588PubMedCentralPubMedGoogle Scholar
  45. 45.
    Misulovin Z, Schwartz YB, Li XY, Kahn TG, Gause M, MacArthur S, Fay JC, Eisen MB, Pirrotta V, Biggin MD, Dorsett D (2008) Association of cohesin and Nipped-B with transcriptionally active regions of the Drosophila melanogaster genome. Chromosoma 117(1): 89–102PubMedCentralPubMedGoogle Scholar
  46. 46.
    Lee BK, Iyer VR (2012) Genome-wide studies of CCCTC-binding factor (CTCF) and cohesin provide insight into chromatin structure and regulation. J Biol Chem 287(37):30906–30913PubMedCentralPubMedGoogle Scholar
  47. 47.
    Xiao T, Wallace J, Felsenfeld G (2011) Specific sites in the C terminus of CTCF interact with the SA2 subunit of the cohesin complex and are required for cohesin-dependent insulation activity. Mol Cell Biol 31(11):2174–2183PubMedCentralPubMedGoogle Scholar
  48. 48.
    Uhlmann F, Nasmyth K (1998) Cohesion between sister chromatids must be established during DNA replication. Curr Biol 8(20): 1095–1101PubMedGoogle Scholar
  49. 49.
    Lengronne A, McIntyre J, Katou Y, Kanoh Y, Hopfner KP, Shirahige K, Uhlmann F (2006) Establishment of sister chromatid cohesion at the S. cerevisiae replication fork. Mol Cell 23(6):787–799PubMedGoogle Scholar
  50. 50.
    Gerlich D, Koch B, Dupeux F, Peters JM, Ellenberg J (2006) Live-cell imaging reveals a stable cohesin-chromatin interaction after but not before DNA replication. Curr Biol 16(15): 1571–1578PubMedGoogle Scholar
  51. 51.
    Skibbens RV, Corson LB, Koshland D, Hieter P (1999) Ctf7p is essential for sister chromatid cohesion and links mitotic chromosome structure to the DNA replication machinery. Genes Dev 13(3):307–319PubMedCentralPubMedGoogle Scholar
  52. 52.
    Hou F, Zou H (2005) Two human orthologues of Eco1/Ctf7 acetyltransferases are both required for proper sister-chromatid cohesion. Mol Biol Cell 16(8):3908–3918PubMedCentralPubMedGoogle Scholar
  53. 53.
    Williams BC, Garrett-Engele CM, Li Z, Williams EV, Rosenman ED, Goldberg ML (2003) Two putative acetyltransferases, san and deco, are required for establishing sister chromatid cohesion in Drosophila. Curr Biol 13(23):2025–2036PubMedGoogle Scholar
  54. 54.
    Bellows AM, Kenna MA, Cassimeris L, Skibbens RV (2003) Human EFO1p exhibits acetyltransferase activity and is a unique combination of linker histone and Ctf7p/Eco1p chromatid cohesion establishment domains. Nucleic Acids Res 31(21):6334–6343PubMedCentralPubMedGoogle Scholar
  55. 55.
    Ben-Shahar T, Heeger S, Lehane C, East P, Flynn H, Skehel M, Uhlmann F (2008) Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion. Science 321(5888):563–566Google Scholar
  56. 56.
    Unal E, Heidinger-Pauli JM, Kim W, Guacci V, Onn I, Gygi SP, Koshland DE (2008) A molecular determinant for the establishment of sister chromatid cohesion. Science 321 (5888): 566–569PubMedGoogle Scholar
  57. 57.
    Zhang J, Shi X, Li Y, Kim BJ, Jia J, Huang Z, Yang T, Fu X, Jung SY, Wang Y, Zhang P, Kim ST, Pan X, Qin J (2008) Acetylation of Smc3 by Eco1 is required for S phase sister chromatid cohesion in both human and yeast. Mol Cell 31(1):143–151PubMedGoogle Scholar
  58. 58.
    Heidinger-Pauli JM, Onn I, Koshland D (2010) Genetic evidence that the acetylation of the Smc3p subunit of cohesin modulates its ATP-bound state to promote cohesion establishment in Saccharomyces cerevisiae. Genetics 185(4):1249–1256PubMedCentralPubMedGoogle Scholar
  59. 59.
    Kueng S, Hegemann B, Peters BH, Lipp JJ, Schleiffer A, Mechtler K, Peters JM (2006) Wapl controls the dynamic association of cohesin with chromatin. Cell 127(5): 955–967PubMedGoogle Scholar
  60. 60.
    Gandhi R, Gillespie PJ, Hirano T (2006) Human Wapl is a cohesin-binding protein that promotes sister-chromatid resolution in mitotic prophase. Curr Biol 16(24):2406–2417PubMedCentralPubMedGoogle Scholar
  61. 61.
    Rowland BD, Roig MB, Nishino T, Kurze A, Uluocak P, Mishra A, Beckouet F, Underwood P, Metson J, Imre R, Mechtler K, Katis VL, Nasmyth K (2009) Building sister chromatid cohesion: smc3 acetylation counteracts an antiestablishment activity. Mol Cell 33(6): 763–774PubMedGoogle Scholar
  62. 62.
    Sutani T, Kawaguchi T, Kanno R, Itoh T, Shirahige K (2009) Budding yeast Wpl1 (Rad61)-Pds5 complex counteracts sister chromatid cohesion-establishing reaction. Curr Biol 19(6):492–497Google Scholar
  63. 63.
    Rankin S, Ayad NG, Kirschner MW (2005) Sororin, a substrate of the anaphase-promoting complex, is required for sister chromatid cohesion in vertebrates. Mol Cell 18(2):185–200PubMedGoogle Scholar
  64. 64.
    Schmitz J, Watrin E, Lenart P, Mechtler K, Peters JM (2007) Sororin is required for stable binding of cohesin to chromatin and for sister chromatid cohesion in interphase. Curr Biol 17(7):630–636PubMedGoogle Scholar
  65. 65.
    Nishiyama T, Ladurner R, Schmitz J, Kreidl E, Schleiffer A, Bhaskara V, Bando M, Shirahige K, Hyman AA, Mechtler K, Peters JM (2010) Sororin mediates sister chromatid cohesion by antagonizing Wapl. Cell 143(5): 737–749PubMedGoogle Scholar
  66. 66.
    Terret ME, Sherwood R, Rahman S, Qin J, Jallepalli PV (2009) Cohesin acetylation speeds the replication fork. Nature 462(7270): 231–234PubMedCentralPubMedGoogle Scholar
  67. 67.
    Ivanov D, Schleiffer A, Eisenhaber F, Mechtler K, Haering CH, Nasmyth K (2002) Eco1 is a novel acetyltransferase that can acetylate proteins involved in cohesion. Curr Biol 12(4):323–328PubMedGoogle Scholar
  68. 68.
    Moldovan GL, Pfander B, Jentsch S (2006) PCNA controls establishment of sister chromatid cohesion during S phase. Mol Cell 23(5):723–732PubMedGoogle Scholar
  69. 69.
    Moldovan GL, Pfander B, Jentsch S (2007) PCNA, the maestro of the replication fork. Cell 129(4):665–679PubMedGoogle Scholar
  70. 70.
    Majka J, Burgers PM (2004) The PCNA-RFC families of DNA clamps and clamp loaders. Prog Nucleic Acid Res Mol Biol 78: 227–260PubMedGoogle Scholar
  71. 71.
    Formosa T, Nittis T (1999) Dna2 mutants reveal interactions with Dna polymerase alpha and Ctf4, a Pol alpha accessory factor, and show that full Dna2 helicase activity is not essential for growth. Genetics 151(4): 1459–1470PubMedCentralPubMedGoogle Scholar
  72. 72.
    Hanna JS, Kroll ES, Lundblad V, Spencer FA (2001) Saccharomyces cerevisiae CTF18 and CTF4 are required for sister chromatid cohesion. Mol Cell Biol 21(9):3144–3158PubMedCentralPubMedGoogle Scholar
  73. 73.
    Mayer ML, Gygi SP, Aebersold R, Hieter P (2001) Identification of RFC(Ctf18p, Ctf8p, Dcc1p): an alternative RFC complex required for sister chromatid cohesion in S. cerevisiae. Mol Cell 7(5):959–970PubMedGoogle Scholar
  74. 74.
    Naiki T, Kondo T, Nakada D, Matsumoto K, Sugimoto K (2001) Chl12 (Ctf18) forms a novel replication factor C-related complex and functions redundantly with Rad24 in the DNA replication checkpoint pathway. Mol Cell Biol 21(17):5838–5845PubMedCentralPubMedGoogle Scholar
  75. 75.
    Bermudez VP, Maniwa Y, Tappin I, Ozato K, Yokomori K, Hurwitz J (2003) The alternative Ctf18-Dcc1-Ctf8-replication factor C complex required for sister chromatid cohesion loads proliferating cell nuclear antigen onto DNA. Proc Natl Acad Sci U S A 100 (18):10237–10242PubMedCentralPubMedGoogle Scholar
  76. 76.
    Xu H, Boone C, Klein HL (2004) Mrc1 is required for sister chromatid cohesion to aid in recombination repair of spontaneous damage. Mol Cell Biol 24(16):7082–7090PubMedCentralPubMedGoogle Scholar
  77. 77.
    Katou Y, Kanoh Y, Bando M, Noguchi H, Tanaka H, Ashikari T, Sugimoto K, Shirahige K (2003) S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature 424(6952):1078–1083PubMedGoogle Scholar
  78. 78.
    Lou H, Komata M, Katou Y, Guan Z, Reis CC, Budd M, Shirahige K, Campbell JL (2008) Mrc1 and DNA polymerase epsilon function together in linking DNA replication and the S phase checkpoint. Mol Cell 32(1): 106–117PubMedCentralPubMedGoogle Scholar
  79. 79.
    Gambus A, van Deursen F, Polychronopoulos D, Foltman M, Jones RC, Edmondson RD, Calzada A, Labib K (2009) A key role for Ctf4 in coupling the MCM2-7 helicase to DNA polymerase alpha within the eukaryotic replisome. EMBO J 28(19):2992–3004PubMedCentralPubMedGoogle Scholar
  80. 80.
    Zhu W, Ukomadu C, Jha S, Senga T, Dhar SK, Wohlschlegel JA, Nutt LK, Kornbluth S, Dutta A (2007) Mcm10 and And-1/CTF4 recruit DNA polymerase alpha to chromatin for initiation of DNA replication. Genes Dev 21(18): 2288–2299PubMedCentralPubMedGoogle Scholar
  81. 81.
    Tanaka H, Katou Y, Yagura M, Saitoh K, Itoh T, Araki H, Bando M, Shirahige K (2009) Ctf4 coordinates the progression of helicase and DNA polymerase alpha. Genes Cells 14(7): 807–820PubMedGoogle Scholar
  82. 82.
    Bermudez VP, Farina A, Tappin I, Hurwitz J (2010) Influence of the human cohesion establishment factor Ctf4/AND-1 on DNA replication. J Biol Chem 285(13):9493–9505PubMedCentralPubMedGoogle Scholar
  83. 83.
    Leman AR, Noguchi E (2012) Local and global functions of Timeless and Tipin in replication fork protection. Cell Cycle 11(21):3945–3955PubMedCentralPubMedGoogle Scholar
  84. 84.
    Mayer ML, Pot I, Chang M, Xu H, Aneliunas V, Kwok T, Newitt R, Aebersold R, Boone C, Brown GW, Hieter P (2004) Identification of protein complexes required for efficient sister chromatid cohesion. Mol Biol Cell 15(4): 1736–1745PubMedCentralPubMedGoogle Scholar
  85. 85.
    Warren CD, Eckley DM, Lee MS, Hanna JS, Hughes A, Peyser B, Jie C, Irizarry R, Spencer FA (2004) S-phase checkpoint genes safeguard high-fidelity sister chromatid cohesion. Mol Biol Cell 15(4):1724–1735PubMedCentralPubMedGoogle Scholar
  86. 86.
    Ansbach AB, Noguchi C, Klansek IW, Heidlebaugh M, Nakamura TM, Noguchi E (2008) RFCCtf18 and the Swi1-Swi3 complex function in separate and redundant pathways required for the stabilization of replication forks to facilitate sister chromatid cohesion in Schizosaccharomyces pombe. Mol Biol Cell 19(2):595–607PubMedCentralPubMedGoogle Scholar
  87. 87.
    Errico A, Cosentino C, Rivera T, Losada A, Schwob E, Hunt T, Costanzo V (2009) Tipin/Tim1/And1 protein complex promotes Pol alpha chromatin binding and sister chromatid cohesion. EMBO J 28(23):3681–3692PubMedCentralPubMedGoogle Scholar
  88. 88.
    Tanaka H, Kubota Y, Tsujimura T, Kumano M, Masai H, Takisawa H (2009) Replisome progression complex links DNA replication to sister chromatid cohesion in Xenopus egg extracts. Genes Cells 14(8):949–963PubMedGoogle Scholar
  89. 89.
    Leman AR, Noguchi C, Lee CY, Noguchi E (2010) Human Timeless and Tipin stabilize replication forks and facilitate sister-chromatid cohesion. J Cell Sci 123(Pt 5):660–670PubMedCentralPubMedGoogle Scholar
  90. 90.
    Dheekollu J, Wiedmer A, Hayden J, Speicher D, Gotter AL, Yen T, Lieberman PM (2011) Timeless links replication termination to mitotic kinase activation. PLoS One 6(5): e19596PubMedCentralPubMedGoogle Scholar
  91. 91.
    Smith-Roe SL, Patel SS, Simpson DA, Zhou YC, Rao S, Ibrahim JG, Kaiser-Rogers KA, Cordeiro-Stone M, Kaufmann WK (2011) Timeless functions independently of the Tim-Tipin complex to promote sister chromatid cohesion in normal human fibroblasts. Cell Cycle 10(10):1618–1624PubMedCentralPubMedGoogle Scholar
  92. 92.
    Sommariva E, Pellny TK, Karahan N, Kumar S, Huberman JA, Dalgaard JZ (2005) Schizosaccharomyces pombe Swi1, Swi3, and Hsk1 are components of a novel S-phase response pathway to alkylation damage. Mol Cell Biol 25(7):2770–2784PubMedCentralPubMedGoogle Scholar
  93. 93.
    Noguchi E, Noguchi C, McDonald WH, Yates JR 3rd, Russell P (2004) Swi1 and Swi3 are components of a replication fork protection complex in fission yeast. Mol Cell Biol 24(19):8342–8355PubMedCentralPubMedGoogle Scholar
  94. 94.
    Liu Y, Kao HI, Bambara RA (2004) Flap endonuclease 1: a central component of DNA metabolism. Annu Rev Biochem 73: 589–615PubMedGoogle Scholar
  95. 95.
    Rudra S, Skibbens RV (2012) Sister chromatid cohesion establishment occurs in concert with lagging strand synthesis. Cell Cycle 11(11):2114–2121PubMedCentralPubMedGoogle Scholar
  96. 96.
    Farina A, Shin JH, Kim DH, Bermudez VP, Kelman Z, Seo YS, Hurwitz J (2008) Studies with the human cohesin establishment factor, ChlR1. Association of ChlR1 with Ctf18-RFC and Fen1. J Biol Chem 283(30): 20925–20936PubMedCentralPubMedGoogle Scholar
  97. 97.
    Wu Y, Suhasini AN, Brosh RM Jr (2009) Welcome the family of FANCJ-like helicases to the block of genome stability maintenance proteins. Cell Mol Life Sci 66(7):1209–1222PubMedCentralPubMedGoogle Scholar
  98. 98.
    Holloway SL, Poruthu J, Scata K (1999) Chromosome segregation and cancer. Exp Cell Res 253(2):308–314PubMedGoogle Scholar
  99. 99.
    Petronczki M, Chwalla B, Siomos MF, Yokobayashi S, Helmhart W, Deutschbauer AM, Davis RW, Watanabe Y, Nasmyth K (2004) Sister-chromatid cohesion mediated by the alternative RF-CCtf18/Dcc1/Ctf8, the helicase Chl1 and the polymerase-alpha-associated protein Ctf4 is essential for chromatid disjunction during meiosis II. J Cell Sci 117(Pt 16):3547–3559PubMedGoogle Scholar
  100. 100.
    Skibbens RV (2004) Chl1p, a DNA helicase-like protein in budding yeast, functions in sister-chromatid cohesion. Genetics 166(1):33–42PubMedCentralPubMedGoogle Scholar
  101. 101.
    Parish JL, Rosa J, Wang X, Lahti JM, Doxsey SJ, Androphy EJ (2006) The DNA helicase ChlR1 is required for sister chromatid cohesion in mammalian cells. J Cell Sci 119(Pt 23): 4857–4865PubMedGoogle Scholar
  102. 102.
    Shah N, Inoue A, Woo Lee S, Beishline K, Lahti JM, Noguchi E (2013) Roles of ChlR1 DNA helicase in replication recovery from DNA damage. Exp Cell Res 319(14): 2244–2253PubMedGoogle Scholar
  103. 103.
    Sherwood R, Takahashi TS, Jallepalli PV (2010) Sister acts: coordinating DNA replication and cohesion establishment. Genes Dev 24(24):2723–2731PubMedCentralPubMedGoogle Scholar
  104. 104.
    Onn I, Heidinger-Pauli JM, Guacci V, Unal E, Koshland DE (2008) Sister chromatid cohesion: a simple concept with a complex reality. Annu Rev Cell Dev Biol 24:105–129PubMedGoogle Scholar
  105. 105.
    Lyons NA, Morgan DO (2011) Cdk1-dependent destruction of Eco1 prevents cohesion establishment after S phase. Mol Cell 42(3):378–389PubMedCentralPubMedGoogle Scholar
  106. 106.
    Lyons NA, Fonslow BR, Diedrich JK, Yates JR 3rd, Morgan DO (2013) Sequential primed kinases create a damage-responsive phosphodegron on Eco1. Nat Struct Mol Biol 20(2):194–201PubMedCentralPubMedGoogle Scholar
  107. 107.
    Unal E, Heidinger-Pauli JM, Koshland D (2007) DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7). Science 317(5835): 245–248PubMedGoogle Scholar
  108. 108.
    Strom L, Karlsson C, Lindroos HB, Wedahl S, Katou Y, Shirahige K, Sjogren C (2007) Postreplicative formation of cohesion is required for repair and induced by a single DNA break. Science 317(5835):242–245PubMedGoogle Scholar
  109. 109.
    Strom L, Lindroos HB, Shirahige K, Sjogren C (2004) Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol Cell 16(6):1003–1015PubMedGoogle Scholar
  110. 110.
    Kurze A, Michie KA, Dixon SE, Mishra A, Itoh T, Khalid S, Strmecki L, Shirahige K, Haering CH, Lowe J, Nasmyth K (2011) A positively charged channel within the Smc1/Smc3 hinge required for sister chromatid cohesion. EMBO J 30(2):364–378PubMedCentralPubMedGoogle Scholar
  111. 111.
    Panizza S, Tanaka T, Hochwagen A, Eisenhaber F, Nasmyth K (2000) Pds5 cooperates with cohesin in maintaining sister chromatid cohesion. Curr Biol 10(24): 1557–1564PubMedGoogle Scholar
  112. 112.
    Chan KL, Roig MB, Hu B, Beckouet F, Metson J, Nasmyth K (2012) Cohesin’s DNA exit gate is distinct from its entrance gate and is regulated by acetylation. Cell 150(5): 961–974PubMedCentralPubMedGoogle Scholar
  113. 113.
    Lopez-Serra L, Lengronne A, Borges V, Kelly G, Uhlmann F (2013) Budding yeast Wapl controls sister chromatid cohesion maintenance and chromosome condensation. Curr Biol 23(1):64–69PubMedGoogle Scholar
  114. 114.
    Chan KL, Gligoris T, Upcher W, Kato Y, Shirahige K, Nasmyth K, Beckouet F (2013) Pds5 promotes and protects cohesin acetylation. Proc Natl Acad Sci U S A 110: 13020–13025PubMedCentralPubMedGoogle Scholar
  115. 115.
    Albuquerque CP, Smolka MB, Payne SH, Bafna V, Eng J, Zhou H (2008) A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol Cell Proteomics 7(7):1389–1396PubMedCentralPubMedGoogle Scholar
  116. 116.
    Hegemann B, Hutchins JR, Hudecz O, Novatchkova M, Rameseder J, Sykora MM, Liu S, Mazanek M, Lenart P, Heriche JK, Poser I, Kraut N, Hyman AA, Yaffe MB, Mechtler K, Peters JM (2011) Systematic phosphorylation analysis of human mitotic protein complexes. Sci Signal 4(198):rs12PubMedGoogle Scholar
  117. 117.
    Hauf S, Roitinger E, Koch B, Dittrich CM, Mechtler K, Peters JM (2005) Dissociation of cohesin from chromosome arms and loss of arm cohesion during early mitosis depends on phosphorylation of SA2. PLoS Biol 3(3):e69PubMedCentralPubMedGoogle Scholar
  118. 118.
    Sumara I, Vorlaufer E, Stukenberg PT, Kelm O, Redemann N, Nigg EA, Peters JM (2002) The dissociation of cohesin from chromosomes in prophase is regulated by Polo-like kinase. Mol Cell 9(3):515–525PubMedGoogle Scholar
  119. 119.
    Nishiyama T, Sykora MM, Huis In 't Veld PJ, Mechtler K, Peters JM (2013) Aurora B and Cdk1 mediate Wapl activation and release of acetylated cohesin from chromosomes by phosphorylating Sororin. Proc Natl Acad Sci U S A 110:13404–13409PubMedCentralPubMedGoogle Scholar
  120. 120.
    Salic A, Waters JC, Mitchison TJ (2004) Vertebrate shugoshin links sister centromere cohesion and kinetochore microtubule stability in mitosis. Cell 118(5):567–578PubMedGoogle Scholar
  121. 121.
    McGuinness BE, Hirota T, Kudo NR, Peters JM, Nasmyth K (2005) Shugoshin prevents dissociation of cohesin from centromeres during mitosis in vertebrate cells. PLoS Biol 3(3):e86PubMedCentralPubMedGoogle Scholar
  122. 122.
    Liu H, Rankin S, Yu H (2013) Phosphorylation-enabled binding of SGO1-PP2A to cohesin protects sororin and centromeric cohesion during mitosis. Nat Cell Biol 15(1):40–49PubMedCentralPubMedGoogle Scholar
  123. 123.
    Kitajima TS, Sakuno T, Ishiguro K, Iemura S, Natsume T, Kawashima SA, Watanabe Y (2006) Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature 441(7089):46–52PubMedGoogle Scholar
  124. 124.
    Hauf S, Waizenegger IC, Peters JM (2001) Cohesin cleavage by separase required for anaphase and cytokinesis in human cells. Science 293(5533):1320–1323PubMedGoogle Scholar
  125. 125.
    Uhlmann F, Lottspeich F, Nasmyth K (1999) Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400(6739):37–42PubMedGoogle Scholar
  126. 126.
    Waizenegger I, Gimenez-Abian JF, Wernic D, Peters JM (2002) Regulation of human separase by securin binding and autocleavage. Curr Biol 12(16):1368–1378PubMedGoogle Scholar
  127. 127.
    Hornig NC, Knowles PP, McDonald NQ, Uhlmann F (2002) The dual mechanism of separase regulation by securin. Curr Biol 12(12):973–982PubMedGoogle Scholar
  128. 128.
    Cohen-Fix O, Peters JM, Kirschner MW, Koshland D (1996) Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p. Genes Dev 10(24): 3081–3093PubMedGoogle Scholar
  129. 129.
    Yamamoto A, Guacci V, Koshland D (1996) Pds1p, an inhibitor of anaphase in budding yeast, plays a critical role in the APC and checkpoint pathway(s). J Cell Biol 133(1): 99–110PubMedGoogle Scholar
  130. 130.
    Thornton BR, Toczyski DP (2003) Securin and B-cyclin/CDK are the only essential targets of the APC. Nat Cell Biol 5(12): 1090–1094PubMedGoogle Scholar
  131. 131.
    Hunt P, Hassold T (2010) Female meiosis: coming unglued with age. Curr Biol 20(17): R699–R702PubMedGoogle Scholar
  132. 132.
    Hassold T, Abruzzo M, Adkins K, Griffin D, Merrill M, Millie E, Saker D, Shen J, Zaragoza M (1996) Human aneuploidy: incidence, origin, and etiology. Environ Mol Mutagen 28(3):167–175PubMedGoogle Scholar
  133. 133.
    Nagaoka SI, Hassold TJ, Hunt PA (2012) Human aneuploidy: mechanisms and new insights into an age-old problem. Nat Rev Genet 13(7):493–504PubMedCentralPubMedGoogle Scholar
  134. 134.
    Liu J, Zhang Z, Bando M, Itoh T, Deardorff MA, Clark D, Kaur M, Tandy S, Kondoh T, Rappaport E, Spinner NB, Vega H, Jackson LG, Shirahige K, Krantz ID (2009) Transcriptional dysregulation in NIPBL and cohesin mutant human cells. PLoS Biol 7(5): e1000119PubMedCentralPubMedGoogle Scholar
  135. 135.
    Musio A, Selicorni A, Focarelli ML, Gervasini C, Milani D, Russo S, Vezzoni P, Larizza L (2006) X-linked Cornelia de Lange syndrome owing to SMC1L1 mutations. Nat Genet 38(5):528–530PubMedGoogle Scholar
  136. 136.
    Tonkin ET, Wang TJ, Lisgo S, Bamshad MJ, Strachan T (2004) NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome. Nat Genet 36(6):636–641PubMedGoogle Scholar
  137. 137.
    Krantz ID, McCallum J, DeScipio C, Kaur M, Gillis LA, Yaeger D, Jukofsky L, Wasserman N, Bottani A, Morris CA, Nowaczyk MJ, Toriello H, Bamshad MJ, Carey JC, Rappaport E, Kawauchi S, Lander AD, Calof AL, Li HH, Devoto M, Jackson LG (2004) Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of Drosophila melanogaster Nipped-B. Nat Genet 36(6):631–635PubMedGoogle Scholar
  138. 138.
    Deardorff MA, Kaur M, Yaeger D, Rampuria A, Korolev S, Pie J, Gil-Rodriguez C, Arnedo M, Loeys B, Kline AD, Wilson M, Lillquist K, Siu V, Ramos FJ, Musio A, Jackson LS, Dorsett D, Krantz ID (2007) Mutations in cohesin complex members SMC3 and SMC1A cause a mild variant of cornelia de Lange syndrome with predominant mental retardation. Am J Hum Genet 80(3):485–494PubMedCentralPubMedGoogle Scholar
  139. 139.
    Deardorff MA, Bando M, Nakato R, Watrin E, Itoh T, Minamino M, Saitoh K, Komata M, Katou Y, Clark D, Cole KE, de Baere E, Decroos C, di Donato N, Ernst S, Francey LJ, Gyftodimou Y, Hirashima K, Hullings M, Ishikawa Y, Jaulin C, Kaur M, Kiyono T, Lombardi PM, Magnaghi-Jaulin L, Mortier GR, Nozaki N, Petersen MB, Seimiya H, Siu VM, Suzuki Y, Takagaki K, Wilde JJ, Willems PJ, Prigent C, Gillessen-Kaesbach G, Christianson DW, Kaiser FJ, Jackson LG, Hirota T, Krantz ID, Shirahige K (2012) HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle. Nature 489(7415):313–317PubMedCentralPubMedGoogle Scholar
  140. 140.
    Vrouwe MG, Elghalbzouri-Maghrani E, Meijers M, Schouten P, Godthelp BC, Bhuiyan ZA, Redeker EJ, Mannens MM, Mullenders LH, Pastink A, Darroudi F (2007) Increased DNA damage sensitivity of Cornelia de Lange syndrome cells: evidence for impaired recombinational repair. Hum Mol Genet 16(12):1478–1487PubMedGoogle Scholar
  141. 141.
    Vega H, Waisfisz Q, Gordillo M, Sakai N, Yanagihara I, Yamada M, van Gosliga D, Kayserili H, Xu C, Ozono K, Jabs EW, Inui K, Joenje H (2005) Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 that is essential for the establishment of sister chromatid cohesion. Nat Genet 37(5):468–470PubMedGoogle Scholar
  142. 142.
    Suhasini AN, Brosh RM Jr (2013) Disease-causing missense mutations in human DNA helicase disorders. Mutat Res 752(2): 138–152PubMedCentralPubMedGoogle Scholar
  143. 143.
    Van der Lelij P, Chrzanowska KH, Godthelp BC, Rooimans MA, Oostra AB, Stumm M, Zdzienicka MZ, Joenje H, de Winter JP (2010) Warsaw breakage syndrome, a cohesinopathy associated with mutations in the XPD helicase family member DDX11/ChlR1. Am J Hum Genet 86(2):262–266PubMedCentralPubMedGoogle Scholar
  144. 144.
    Capo-Chichi JM, Bharti SK, Sommers JA, Yammine T, Chouery E, Patry L, Rouleau GA, Samuels ME, Hamdan FF, Michaud JL, Brosh RM Jr, Megarbane A, Kibar Z (2013) Identification and biochemical characterization of a novel mutation in DDX11 causing Warsaw breakage syndrome. Hum Mutat 34(1):103–107PubMedGoogle Scholar
  145. 145.
    Deans AJ, West SC (2011) DNA interstrand crosslink repair and cancer. Nat Rev Cancer 11(7):467–480PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of BiologyDuke UniversityDurhamUSA
  2. 2.Duke Center for Systems BiologyDuke UniversityDurhamUSA
  3. 3.Department of Biochemistry and Molecular BiologyDrexel University College of MedicinePhiladelphiaUSA

Personalised recommendations