Analyzing Ras-Associated Cell Proliferation Signaling

  • Matthew C. Stout
  • Edgar Asiimwe
  • James R. Birkenstamm
  • Su Yeon Kim
  • Paul M. CampbellEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1170)


Ras-dependent signaling is an important regulator of cell cycle progression, proliferation, senescence, and apoptosis. Several of the downstream effectors of Ras play dual roles in each of these processes. Under one set of conditions, they promote cell cycle progression and proliferation; yet, in a different paradigm, they drive cell cycle arrest and apoptosis. Furthermore, there is cross talk between certain downstream effectors of Ras including the PI3K–AKT and Raf–MEK–ERK pathways. Here we describe a series of experiments used to dissect the effect of different Ras-dependent signaling pathways on cell cycle progression, proliferation, senescence, and apoptosis. Furthermore, we highlight the importance of consistent growth conditions of cells in culture when studying Ras-dependent signaling as we show that the activation of downstream effectors of Ras changes with the confluency at which the cells are grown.

Key words

Ras Cell cycle Proliferation Senescence Anoikis Pulldown assay Confluency 



We would like to thank Channing J. Der for the kind gift of the GTPase-binding domain pGEX constructs used in the pulldown assays.


  1. 1.
    Malumbres M, Barbacid M (2003) RAS oncogenes: the first 30 years. Nat Rev Cancer 3:459–465PubMedCrossRefGoogle Scholar
  2. 2.
    Mebratu Y, Tesfaigzi Y (2009) How ERK1/2 activation controls cell proliferation and cell death: is subcellular localization the answer? Cell Cycle 8(8):1168–1175PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Kim JK, Diehl JA (2009) Nuclear cyclin D1: an oncogenic driver in human cancer. J Cell Physiol 220(2):292–296PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740PubMedCrossRefGoogle Scholar
  5. 5.
    Tokunaga E, Oki E, Egashira A, Sadanaga N, Morita M, Kakeji Y, Maehara Y (2008) Deregulation of the Akt pathway in human cancer. Curr Cancer Drug Targets 8(1):27–36PubMedCrossRefGoogle Scholar
  6. 6.
    Chien Y, White MA (2003) RAL GTPases are linchpin modulators of human tumour-cell proliferation and survival. EMBO Rep 4(8):800–806PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Lim KH, O’Hayer K, Adam SJ, Kendall SD, Campbell PM, Der CJ, Counter CM (2006) Divergent roles for RalA and RalB in malignant growth of human pancreatic carcinoma cells. Curr Biol 16:2385–2394PubMedCrossRefGoogle Scholar
  8. 8.
    Gille H, Sharrocks AD, Shaw PE (1992) Phosphorylation of transcription factor p62TCF by MAP kinase stimulates ternary complex formation at c-fos promoter. Nature 358:414–417PubMedCrossRefGoogle Scholar
  9. 9.
    Lenormand P, Sardet C, Pages G, L’Allemain G, Brunet A, Pouyssegur J (1993) Growth factors induce nuclear translocation of MAP kinases (p42mapk and p44mapk) but not of their activator MAP kinase kinase (p45mapkk) in fibroblasts. J Cell Biol 122(5):1079–1088PubMedCrossRefGoogle Scholar
  10. 10.
    Chen RH, Sarnecki C, Blenis J (1992) Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Mol Cell Biol 12(3):915–927PubMedCentralPubMedGoogle Scholar
  11. 11.
    Zhao J, Yuan X, Frodin M, Grummt I (2003) ERK-dependent phosphorylation of the transcription initiation factor TIF-IA is required for RNA polymerase I transcription and cell growth. Mol Cell 11:405–413PubMedCrossRefGoogle Scholar
  12. 12.
    Finnberg N, El-Deiry WS (2004) Activating FOXO3a, NF-kappaB and p53 by targeting IKKs: an effective multi-faceted targeting of the tumor-cell phenotype? Cancer Biol Ther 3(7):614–616PubMedCrossRefGoogle Scholar
  13. 13.
    Burgering BM, Kops GJ (2002) Cell cycle and death control: long live Forkheads. Trends Biochem Sci 27(7):352–360PubMedCrossRefGoogle Scholar
  14. 14.
    Dijkers PF, Medema RH, Pals C, Banerji L, Thomas NS, Lam EW, Burgering BM, Raaijmakers JA, Lammers JW, Koenderman L, Coffer PJ (2000) Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcription regulation of p27KIP1. Mol Cell Biol 20(24):9138–9148PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Chen CH, Wang WJ, Kuo JC, Tsai HC, Lin JR, Chang ZF, Chen RH (2005) Bidirectional signals transduced by DAPK-ERK interaction promote the apoptotic effect of DAPK. EMBO J 24(2):294–304PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Schmidt M, Fernandez de Mattos S, van der Horst A, Klompmaker R, Kops GJ, Lam EW, Burgering BM, Medema RH (2002) Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol Cell Biol 22(22):7842–7852PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Burgering BM, Medema RH (2003) Decisions on life and death: FOXO Forkhead transcription factors are in command when PKB/Akt is off duty. J Leukoc Biol 73(6):689–701PubMedCrossRefGoogle Scholar
  18. 18.
    Medema RH, Kops GJ, Bos JL, Burgering BM (2000) AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404:782–787PubMedCrossRefGoogle Scholar
  19. 19.
    Alt JR, Cleveland JL, Hannink M, Diehl JA (2000) Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation. Genes Dev 14:3102–3114PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Diehl JA, Cheng M, Roussel MF, Sherr CJ (1998) Glycogen synthase kinase-3B regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 12:3499–3511PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Biggs WH 3rd, Meisenhelder J, Hunter T, Cavenee WK, Arden KC (1999) Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged heliz transcription factor FKHR1. Proc Natl Acad Sci U S A 96:7421–7426PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868PubMedCrossRefGoogle Scholar
  23. 23.
    Rena G, Guo S, Cichy SC, Unterman TG, Cohen P (1999) Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J Biol Chem 274(24):17179–17183PubMedCrossRefGoogle Scholar
  24. 24.
    Romashkova JA, Makarov SS (1999) NF-kB is a target of AKT in anti-apoptotic PDGF signaling. Nature 401:86–90PubMedCrossRefGoogle Scholar
  25. 25.
    Du K, Montminy M (1998) CREB is a regulatory target for the protein kinase Akt/PKB.J Biol Chem 273(49):32377–32379PubMedCrossRefGoogle Scholar
  26. 26.
    Campbell PM, Singh A, Williams FJ, Frantz K, Ulku AS, Kelley GG, Der CJ (2006) Genetic and pharmacologic dissection of Ras effector utilization in oncogenesis. Methods Enzymol 407:195–216PubMedCrossRefGoogle Scholar
  27. 27.
    Albanese C, Johnson J, Watanabe G, Eklund N, Vu D, Arnold A, Pestell RG (1995) Transforming p21ras mutants and c-Ets-2 activate the cyclin D1 promoter through distinguishable regions. J Biol Chem 270(40):23589–23597PubMedCrossRefGoogle Scholar
  28. 28.
    Vaque JP, Fernandez-Garcia B, Garcia-Sanz P, Ferrandiz N, Bretones G, Calvo F, Crespo P, Marin MC, Leon J (2008) c-Myc inhibits Ras-mediated differentiation of pheochromocytoma cells by blocking c-Jun up-regulation. Mol Cancer Res 6(2):325–339PubMedCrossRefGoogle Scholar
  29. 29.
    Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92:9363–9367PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602PubMedCrossRefGoogle Scholar
  31. 31.
    Benanti JA, Galloway DA (2004) Normal human fibroblasts are resistant to RAS-induced senescence. Mol Cell Biol 24(7):2842–2852PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Zhuang D et al (2008) C-MYC overexpression is required for continuous suppression of oncogene-induced senescence in melanoma cells. Oncogene 27:6623–6634PubMedCrossRefGoogle Scholar
  33. 33.
    Frisch SM, Francis H (1994) Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 124(4):619–626PubMedCrossRefGoogle Scholar
  34. 34.
    Re F, Zanetti A, Sironi M, Polentarutti N, Lanfrancone L, Dejana E, Colotta F (1994) Inhibition of anchorage-dependent cell spreading triggers apoptosis in cultured human endothelial cells. J Cell Biol 127(2):537–546PubMedCrossRefGoogle Scholar
  35. 35.
    McFall A, Ulku A, Lambert QT, Kusa A, Rogers-Graham K, Der CJ (2001) Oncogenic Ras blocks anoikis by activation of a novel effector pathway independent of phosphatidylinositol 3-kinase. Mol Cell Biol 21(16):5488–5499PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Ma Z, Liu Z, Wu RF, Terada LS (2010) p66Shc restrains Ras hyperactivation and suppresses metastatic behavior. Oncogene 29:5559–5567PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Yu M, Stott S, Toner M, Maheswaran S, Haber DA (2011) Circulating tumor cells: approaches to isolation and characterization. J Cell Biol 192(3):373–382PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Taylor SJ, Shalloway D (1996) Cell cycle-dependent activation of Ras. Curr Biol 6(12):1621–1627PubMedCrossRefGoogle Scholar
  39. 39.
    Campbell PM, Groehler AL, Lee KM, Ouellette MM, Khazak V, Der CJ (2007) K-Ras promotes growth transformation and invasion of immortalized human pancreatic cells by Raf and phosphatidylinositol 3-kinase signaling. Cancer Res 67(5):2098–2106PubMedCrossRefGoogle Scholar
  40. 40.
    Ma Z, Myers DP, Wu RF, Nwariaku FE, Terada LS (2007) p66Shc mediates anoikis through RhoA. J Cell Biol 179(1):23–31PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Noonan EJ, Place RF, Basak S, Pookot D, Li LC (2010) miR-449a causes Rb-dependent cell cycle arrest and senescence in prostate cancer cells. Oncotarget 1(5):349–358PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Matthew C. Stout
    • 1
  • Edgar Asiimwe
    • 1
  • James R. Birkenstamm
    • 1
  • Su Yeon Kim
    • 1
  • Paul M. Campbell
    • 1
    Email author
  1. 1.Department of Pharmacology and PhysiologyDrexel University College of MedicinePhiladelphiaUSA

Personalised recommendations