Advertisement

Cell Cycle Regulation During Viral Infection

  • Sumedha Bagga
  • Michael J. Bouchard
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1170)

Abstract

To replicate their genomes in cells and generate new progeny, viruses typically require factors provided by the cells that they have infected. Subversion of the cellular machinery that controls replication of the infected host cell is a common activity of many viruses. Viruses employ different strategies to deregulate cell cycle checkpoint controls and modulate cell proliferation pathways. A number of DNA and RNA viruses encode proteins that target critical cell cycle regulators to achieve cellular conditions that are beneficial for viral replication. Many DNA viruses induce quiescent cells to enter the cell cycle; this is thought to increase pools of deoxynucleotides and thus, facilitate viral replication. In contrast, some viruses can arrest cells in a particular phase of the cell cycle that is favorable for replication of the specific virus. Cell cycle arrest may inhibit early cell death of infected cells, allow the cells to evade immune defenses, or help promote virus assembly. Although beneficial for the viral life cycle, virus-mediated alterations in normal cell cycle control mechanisms could have detrimental effects on cellular physiology and may ultimately contribute to pathologies associated with the viral infection, including cell transformation and cancer progression and maintenance. In this chapter, we summarize various strategies employed by DNA and RNA viruses to modulate the replication cycle of the virus-infected cell. When known, we describe how these virus-associated effects influence replication of the virus and contribute to diseases associated with infection by that specific virus.

Key words

Cell cycle Regulation DNA and RNA viruses Consequences 

References

  1. 1.
    Nascimento R, Costa H, Parkhouse RM (2012) Virus manipulation of cell cycle. Protoplasma 249(3):519–528PubMedGoogle Scholar
  2. 2.
    Condit RC (2013) Principles of virology. In: Knipe DM, Howley PM (eds) Fields virology, vol 1, 6th edn. Lippincot Williams and Wilkins, Philadelphia, PA, pp 21–51Google Scholar
  3. 3.
    Swanton C, Jones N (2001) Strategies in subversion: de-regulation of the mammalian cell cycle by viral gene products. Int J Exp Pathol 82(1):3–13PubMedCentralPubMedGoogle Scholar
  4. 4.
    Flemington EK (2001) Herpesvirus lytic replication and the cell cycle: arresting new developments. J Virol 75(10):4475–4481PubMedCentralPubMedGoogle Scholar
  5. 5.
    Emmett SR, Dove B, Mahoney L, Wurm T, Hiscox JA (2005) The cell cycle and virus infection. Methods Mol Biol 296:197–218PubMedGoogle Scholar
  6. 6.
    Lavia P, Mileo AM, Giordano A, Paggi MG (2003) Emerging roles of DNA tumor viruses in cell proliferation: new insights into genomic instability. Oncogene 22(42):6508–6516PubMedGoogle Scholar
  7. 7.
    Hume AJ, Kalejta RF (2009) Regulation of the retinoblastoma proteins by the human herpesviruses. Cell Div 4:1PubMedCentralPubMedGoogle Scholar
  8. 8.
    Davy C, Doorbar J (2007) G2/M cell cycle arrest in the life cycle of viruses. Virology 368(2):219–226PubMedGoogle Scholar
  9. 9.
    Dove B, Brooks G, Bicknell K, Wurm T, Hiscox JA (2006) Cell cycle perturbations induced by infection with the coronavirus infectious bronchitis virus and their effect on virus replication. J Virol 80(8):4147–4156PubMedCentralPubMedGoogle Scholar
  10. 10.
    He Y, Xu K, Keiner B, Zhou J, Czudai V, Li T, Chen Z, Liu J, Klenk HD, Shu YL, Sun B (2010) Influenza A virus replication induces cell cycle arrest in G0/G1 phase. J Virol 84(24):12832–12840PubMedCentralPubMedGoogle Scholar
  11. 11.
    Bouchard MJ, Navas-Martin S (2011) Hepatitis B and C virus hepatocarcinogenesis: lessons learned and future challenges. Cancer Lett 305(2):123–143PubMedCentralPubMedGoogle Scholar
  12. 12.
    Dayaram T, Marriott SJ (2008) Effect of transforming viruses on molecular mechanisms associated with cancer. J Cell Physiol 216(2):309–314PubMedGoogle Scholar
  13. 13.
    Saha A, Kaul R, Murakami M, Robertson ES (2010) Tumor viruses and cancer biology: modulating signaling pathways for therapeutic intervention. Cancer Biol Ther 10(10):961–978PubMedGoogle Scholar
  14. 14.
    McLaughlin-Drubin ME, Munger K (2008) Viruses associated with human cancer. Biochim Biophys Acta 1782(3):127–150PubMedCentralPubMedGoogle Scholar
  15. 15.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70PubMedGoogle Scholar
  16. 16.
    Chaurushiya MS, Weitzman MD (2009) Viral manipulation of DNA repair and cell cycle checkpoints. DNA Repair (Amst) 8(9):1166–1176Google Scholar
  17. 17.
    Howley PM, Livingston DM (2009) Small DNA tumor viruses: large contributors to biomedical sciences. Virology 384(2):256–259PubMedCentralPubMedGoogle Scholar
  18. 18.
    Op De Beeck A, Caillet-Fauquet P (1997) Viruses and the cell cycle. In: Meijer L, Guidet S, Philippe M (eds) Progress in cell cycle research, vol 3. Plenum Press, New York, NY, pp 1–19Google Scholar
  19. 19.
    Vousden KH (1995) Regulation of the cell cycle by viral oncoproteins. Semin Cancer Biol 6(2):109–116PubMedGoogle Scholar
  20. 20.
    Vermeulen K, Van Bockstaele DR, Berneman ZN (2003) The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 36(3):131–149PubMedGoogle Scholar
  21. 21.
    Harper JV, Brooks G (2005) The mammalian cell cycle: an overview. Methods Mol Biol 296:113–153PubMedGoogle Scholar
  22. 22.
    Cooper GM (2000) The cell cycle. In: Cooper GM (ed) The cell: a molecular approach, 2nd edn. Sinauer Associates, Sunderland, MA, http://www.ncbi.nlm.nih.gov/books/NBK9839
  23. 23.
    Cook SJ, Balmanno K, Garner A, Millar T, Taverner C, Todd D (2000) Regulation of cell cycle re-entry by growth, survival and stress signalling pathways. Biochem Soc Trans 28(2):233–240PubMedGoogle Scholar
  24. 24.
    Amon A (1999) The spindle checkpoint. Curr Opin Genet Dev 9(1):69–75PubMedGoogle Scholar
  25. 25.
    Sherr CJ (1993) Mammalian G1 cyclins. Cell 73(6):1059–1065PubMedGoogle Scholar
  26. 26.
    Sherr CJ (1994) G1 phase progression: cycling on cue. Cell 79(4):551–555PubMedGoogle Scholar
  27. 27.
    Assoian RK, Zhu X (1997) Cell anchorage and the cytoskeleton as partners in growth factor dependent cell cycle progression. Curr Opin Cell Biol 9(1):93–98PubMedGoogle Scholar
  28. 28.
    Ohtsubo M, Theodoras AM, Schumacher J, Roberts JM, Pagano M (1995) Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. Mol Cell Biol 15(5):2612–2624PubMedCentralPubMedGoogle Scholar
  29. 29.
    Girard F, Strausfeld U, Fernandez A, Lamb NJ (1991) Cyclin A is required for the onset of DNA replication in mammalian fibroblasts. Cell 67(6):1169–1179PubMedGoogle Scholar
  30. 30.
    Walker DH, Maller JL (1991) Role for cyclin A in the dependence of mitosis on completion of DNA replication. Nature 354(6351):314–317PubMedGoogle Scholar
  31. 31.
    Lew DJ, Kornbluth S (1996) Regulatory roles of cyclin dependent kinase phosphorylation in cell cycle control. Curr Opin Cell Biol 8(6):795–804PubMedGoogle Scholar
  32. 32.
    Pines J, Hunter T (1991) Cyclin-dependent kinases: a new cell cycle motif? Trends Cell Biol 1(5):117–121PubMedGoogle Scholar
  33. 33.
    Morgan DO (1997) Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13:261–291PubMedGoogle Scholar
  34. 34.
    Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T (1998) Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391(6667):597–601PubMedGoogle Scholar
  35. 35.
    Kato J, Matsushime H, Hiebert SW, Ewen ME, Sherr CJ (1993) Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev 7(3):331–342PubMedGoogle Scholar
  36. 36.
    Buchkovich K, Duffy LA, Harlow E (1989) The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell 58(6):1097–1105PubMedGoogle Scholar
  37. 37.
    Bracken AP, Ciro M, Cocito A, Helin K (2004) E2F target genes: unraveling the biology. Trends Biochem Sci 29(8):409–417PubMedGoogle Scholar
  38. 38.
    Hinds PW, Mittnacht S, Dulic V, Arnold A, Reed SI, Weinberg RA (1992) Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell 70(6):993–1006PubMedGoogle Scholar
  39. 39.
    Montagnoli A, Fiore F, Eytan E, Carrano AC, Draetta GF, Hershko A, Pagano M (1999) Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation. Genes Dev 13(9):1181–1189PubMedCentralPubMedGoogle Scholar
  40. 40.
    Roberts JM, Koff A, Polyak K, Firpo E, Collins S, Ohtsubo M, Massague J (1994) Cyclins, Cdks, and cyclin kinase inhibitors. Cold Spring Harb Symp Quant Biol 59:31–38PubMedGoogle Scholar
  41. 41.
    Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13(12):1501–1512PubMedGoogle Scholar
  42. 42.
    Alberts B, Jhonson A, Lewis J, Raff M, Roberts K, Walter P (2008) The cell cycle. In: Alberts B, Jhonson A, Lewis J, Raff M, Roberts K, Walter P (eds) Molecular biology of the cell, 5th edn. GS, New York, NY, pp 1053–1092Google Scholar
  43. 43.
    Kolupaeva V, Janssens V (2013) PP1 and PP2A phosphatases—cooperating partners in modulating retinoblastoma protein activation. FEBS J 280(2):627–643PubMedGoogle Scholar
  44. 44.
    Stark GR, Taylor WR (2006) Control of the G2/M transition. Mol Biotechnol 32(3):227–248PubMedGoogle Scholar
  45. 45.
    Branzei D, Foiani M (2008) Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol 9(4):297–308PubMedGoogle Scholar
  46. 46.
    Lobrich M, Jeggo PA (2007) The impact of a negligent G2/M checkpoint on genomic instability and cancer induction. Nat Rev Cancer 7(11):861–869PubMedGoogle Scholar
  47. 47.
    Porter LA, Donoghue DJ (2003) Cyclin B1 and CDK1: nuclear localization and upstream regulators. Prog Cell Cycle Res 5:335–347PubMedGoogle Scholar
  48. 48.
    Manchado E, Eguren M, Malumbres M (2010) The anaphase-promoting complex/cyclosome (APC/C): cell-cycle-dependent and -independent functions. Biochem Soc Trans 38(Pt 1):65–71PubMedGoogle Scholar
  49. 49.
    Barford D (2011) Structure, function and mechanism of the anaphase promoting complex (APC/C). Q Rev Biophys 44(2):153–190PubMedGoogle Scholar
  50. 50.
    Page AM, Hieter P (1999) The anaphase-promoting complex: new subunits and regulators. Annu Rev Biochem 68:583–609PubMedGoogle Scholar
  51. 51.
    Peters JM (2006) The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol 7(9):644–656PubMedGoogle Scholar
  52. 52.
    Acquaviva C, Herzog F, Kraft C, Pines J (2004) The anaphase promoting complex/cyclosome is recruited to centromeres by the spindle assembly checkpoint. Nat Cell Biol 6(9):892–898PubMedGoogle Scholar
  53. 53.
    Mo M, Shahar S, Fleming SB, Mercer AA (2012) How viruses affect the cell cycle through manipulation of the APC/C. Trends Microbiol 20(9):440–448PubMedGoogle Scholar
  54. 54.
    Kornitzer D, Sharf R, Kleinberger T (2001) Adenovirus E4orf4 protein induces PP2A-dependent growth arrest in Saccharomyces cerevisiae and interacts with the anaphase-promoting complex/cyclosome. J Cell Biol 154(2):331–344PubMedCentralPubMedGoogle Scholar
  55. 55.
    Mui MZ, Roopchand DE, Gentry MS, Hallberg RL, Vogel J, Branton PE (2010) Adenovirus protein E4orf4 induces premature APCCdc20 activation in Saccharomyces cerevisiae by a protein phosphatase 2A-dependent mechanism. J Virol 84(9):4798–4809PubMedCentralPubMedGoogle Scholar
  56. 56.
    Smits VA, Medema RH (2001) Checking out the G(2)/M transition. Biochim Biophys Acta 1519(1–2):1–12PubMedGoogle Scholar
  57. 57.
    Lukas J, Lukas C, Bartek J (2004) Mammalian cell cycle checkpoints: signalling pathways and their organization in space and time. DNA Repair (Amst) 3(8–9):997–1007Google Scholar
  58. 58.
    Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85PubMedGoogle Scholar
  59. 59.
    Rumschlag-Booms E, Rong L (2013) Influenza a virus entry: implications in virulence and future therapeutics. Adv Virol 2013:121924PubMedCentralPubMedGoogle Scholar
  60. 60.
    La Gruta NL, Kedzierska K, Stambas J, Doherty PC (2007) A question of self-preservation: immunopathology in influenza virus infection. Immunol Cell Biol 85(2):85–92PubMedGoogle Scholar
  61. 61.
    Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992) Evolution and ecology of influenza A viruses. Microbiol Rev 56(1):152–179PubMedCentralPubMedGoogle Scholar
  62. 62.
    Simonsen L, Clarke MJ, Williamson GD, Stroup DF, Arden NH, Schonberger LB (1997) The impact of influenza epidemics on mortality: introducing a severity index. Am J Public Health 87(12):1944–1950PubMedCentralPubMedGoogle Scholar
  63. 63.
    Morens DM, Fauci AS (2007) The 1918 influenza pandemic: insights for the 21st century. J Infect Dis 195(7):1018–1028PubMedGoogle Scholar
  64. 64.
    Samji T (2009) Influenza A: understanding the viral life cycle. Yale J Biol Med 82(4):153–159PubMedCentralPubMedGoogle Scholar
  65. 65.
    Palese P, Shaw ML (2007) Orthomyxoviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology, 5th edn. Lippincot Williams and Wilkins, Philadelphia, PA, pp 1647–1690Google Scholar
  66. 66.
    Couch RB (1996) Orthomyxoviruses. In: Baron S (ed) Medical microbiology, 4th edn. University of Texas medical branch at Galveston, Galveston, TX, http://www.ncbi.nlm.nih.gov/books/NBK8611/
  67. 67.
    Zhirnov OP, Klenk HD (2007) Control of apoptosis in influenza virus-infected cells by up-regulation of Akt and p53 signaling. Apoptosis 12(8):1419–1432PubMedGoogle Scholar
  68. 68.
    Jiang W, Wang Q, Chen S, Gao S, Song L, Liu P, Huang W (2013) Influenza A virus NS1 induces G0/G1 cell cycle arrest by inhibiting the expression and activity of RhoA protein. J Virol 87(6):3039–3052PubMedCentralPubMedGoogle Scholar
  69. 69.
    Turpin E, Luke K, Jones J, Tumpey T, Konan K, Schultz-Cherry S (2005) Influenza virus infection increases p53 activity: role of p53 in cell death and viral replication. J Virol 79(14):8802–8811PubMedCentralPubMedGoogle Scholar
  70. 70.
    Terrier O, Josset L, Textoris J, Marcel V, Cartet G, Ferraris O, N’Guyen C, Lina B, Diaz JJ, Bourdon JC, Rosa-Calatrava M (2011) Cellular transcriptional profiling in human lung epithelial cells infected by different subtypes of influenza A viruses reveals an overall down-regulation of the host p53 pathway. Virol J 8:285PubMedCentralPubMedGoogle Scholar
  71. 71.
    Hale BG, Randall RE, Ortin J, Jackson D (2008) The multifunctional NS1 protein of influenza A viruses. J Gen Virol 89(Pt 10):2359–2376PubMedGoogle Scholar
  72. 72.
    Zhang S, Tang Q, Xu F, Xue Y, Zhen Z, Deng Y, Liu M, Chen J, Liu S, Qiu M, Liao Z, Li Z, Luo D, Shi F, Zheng Y, Bi F (2009) RhoA regulates G1-S progression of gastric cancer cells by modulation of multiple INK4 family tumor suppressors. Mol Cancer Res 7(4):570–580PubMedGoogle Scholar
  73. 73.
    Weber JD, Hu W, Jefcoat SC Jr, Raben DM, Baldassare JJ (1997) Ras-stimulated extracellular signal-related kinase 1 and RhoA activities coordinate platelet-derived growth factor-induced G1 progression through the independent regulation of cyclin D1 and p27. J Biol Chem 272(52):32966–32971PubMedGoogle Scholar
  74. 74.
    Li H, Ung CY, Ma XH, Li BW, Low BC, Cao ZW, Chen YZ (2009) Simulation of crosstalk between small GTPase RhoA and EGFR-ERK signaling pathway via MEKK1. Bioinformatics 25(3):358–364PubMedGoogle Scholar
  75. 75.
    Croft DR, Olson MF (2006) The Rho GTPase effector ROCK regulates cyclin A, cyclin D1, and p27Kip1 levels by distinct mechanisms. Mol Cell Biol 26(12):4612–4627PubMedCentralPubMedGoogle Scholar
  76. 76.
    Engelhardt OG, Fodor E (2006) Functional association between viral and cellular transcription during influenza virus infection. Rev Med Virol 16(5):329–345PubMedGoogle Scholar
  77. 77.
    Yonaha M, Chibazakura T, Kitajima S, Yasukochi Y (1995) Cell cycle-dependent regulation of RNA polymerase II basal transcription activity. Nucleic Acids Res 23(20):4050–4054PubMedCentralPubMedGoogle Scholar
  78. 78.
    Garfinkel MS, Katze MG (1992) Translational control by influenza virus. Selective and cap-dependent translation of viral mRNAs in infected cells. J Biol Chem 267(13):9383–9390PubMedGoogle Scholar
  79. 79.
    Park YW, Wilusz J, Katze MG (1999) Regulation of eukaryotic protein synthesis: selective influenza viral mRNA translation is mediated by the cellular RNA-binding protein GRSF-1. Proc Natl Acad Sci U S A 96(12):6694–6699PubMedCentralPubMedGoogle Scholar
  80. 80.
    Pyronnet S, Dostie J, Sonenberg N (2001) Suppression of cap-dependent translation in mitosis. Genes Dev 15(16):2083–2093PubMedCentralPubMedGoogle Scholar
  81. 81.
    Stewart SA, Poon B, Jowett JB, Xie Y, Chen IS (1999) Lentiviral delivery of HIV-1 Vpr protein induces apoptosis in transformed cells. Proc Natl Acad Sci U S A 96(21):12039–12043PubMedCentralPubMedGoogle Scholar
  82. 82.
    Gozlan J, Lathey JL, Spector SA (1998) Human immunodeficiency virus type 1 induction mediated by genistein is linked to cell cycle arrest in G2. J Virol 72(10):8174–8180PubMedCentralPubMedGoogle Scholar
  83. 83.
    Yuan X, Shan Y, Zhao Z, Chen J, Cong Y (2005) G0/G1 arrest and apoptosis induced by SARS-CoV 3b protein in transfected cells. Virol J 2:66PubMedCentralPubMedGoogle Scholar
  84. 84.
    Yuan X, Wu J, Shan Y, Yao Z, Dong B, Chen B, Zhao Z, Wang S, Chen J, Cong Y (2006) SARS coronavirus 7a protein blocks cell cycle progression at G0/G1 phase via the cyclin D3/pRb pathway. Virology 346(1):74–85PubMedGoogle Scholar
  85. 85.
    Chen CJ, Makino S (2004) Murine coronavirus replication induces cell cycle arrest in G0/G1 phase. J Virol 78(11):5658–5669PubMedCentralPubMedGoogle Scholar
  86. 86.
    Chen CJ, Sugiyama K, Kubo H, Huang C, Makino S (2004) Murine coronavirus nonstructural protein p28 arrests cell cycle in G0/G1 phase. J Virol 78(19):10410–10419PubMedCentralPubMedGoogle Scholar
  87. 87.
    Weiss SR, Navas-Martin S (2005) Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev 69(4):635–664PubMedCentralPubMedGoogle Scholar
  88. 88.
    Marra MA, Jones SJ, Astell CR, Holt RA, Brooks-Wilson A, Butterfield YS, Khattra J, Asano JK, Barber SA, Chan SY, Cloutier A, Coughlin SM, Freeman D, Girn N, Griffith OL, Leach SR, Mayo M, McDonald H, Montgomery SB, Pandoh PK, Petrescu AS, Robertson AG, Schein JE, Siddiqui A, Smailus DE, Stott JM, Yang GS, Plummer F, Andonov A, Artsob H, Bastien N, Bernard K, Booth TF, Bowness D, Czub M, Drebot M, Fernando L, Flick R, Garbutt M, Gray M, Grolla A, Jones S, Feldmann H, Meyers A, Kabani A, Li Y, Normand S, Stroher U, Tipples GA, Tyler S, Vogrig R, Ward D, Watson B, Brunham RC, Krajden M, Petric M, Skowronski DM, Upton C, Roper RL (2003) The Genome sequence of the SARS-associated coronavirus. Science 300(5624):1399–1404PubMedGoogle Scholar
  89. 89.
    Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, Penaranda S, Bankamp B, Maher K, Chen MH, Tong S, Tamin A, Lowe L, Frace M, DeRisi JL, Chen Q, Wang D, Erdman DD, Peret TC, Burns C, Ksiazek TG, Rollin PE, Sanchez A, Liffick S, Holloway B, Limor J, McCaustland K, Olsen-Rasmussen M, Fouchier R, Gunther S, Osterhaus AD, Drosten C, Pallansch MA, Anderson LJ, Bellini WJ (2003) Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300(5624):1394–1399PubMedGoogle Scholar
  90. 90.
    Compton SR, Barthold SW, Smith AL (1993) The cellular and molecular pathogenesis of coronaviruses. Lab Anim Sci 43(1):15–28PubMedGoogle Scholar
  91. 91.
    Wege H, Siddell S, ter Meulen V (1982) The biology and pathogenesis of coronaviruses. Curr Top Microbiol Immunol 99:165–200PubMedGoogle Scholar
  92. 92.
    An S, Chen CJ, Yu X, Leibowitz JL, Makino S (1999) Induction of apoptosis in murine coronavirus-infected cultured cells and demonstration of E protein as an apoptosis inducer. J Virol 73(9):7853–7859PubMedCentralPubMedGoogle Scholar
  93. 93.
    Chen CJ, Makino S (2002) Murine coronavirus-induced apoptosis in 17Cl-1 cells involves a mitochondria-mediated pathway and its downstream caspase-8 activation and bid cleavage. Virology 302(2):321–332PubMedGoogle Scholar
  94. 94.
    Belyavsky M, Belyavskaya E, Levy GA, Leibowitz JL (1998) Coronavirus MHV-3-induced apoptosis in macrophages. Virology 250(1):41–49PubMedGoogle Scholar
  95. 95.
    Zhu L, Anasetti C (1995) Cell cycle control of apoptosis in human leukemic T cells. J Immunol 154(1):192–200PubMedGoogle Scholar
  96. 96.
    Klumperman J, Locker JK, Meijer A, Horzinek MC, Geuze HJ, Rottier PJ (1994) Coronavirus M proteins accumulate in the Golgi complex beyond the site of virion budding. J Virol 68(10):6523–6534PubMedCentralPubMedGoogle Scholar
  97. 97.
    Tooze J, Tooze S, Warren G (1984) Replication of coronavirus MHV-A59 in sac- cells: determination of the first site of budding of progeny virions. Eur J Cell Biol 33(2):281–293PubMedGoogle Scholar
  98. 98.
    Lowe M, Nakamura N, Warren G (1998) Golgi division and membrane traffic. Trends Cell Biol 8(1):40–44PubMedGoogle Scholar
  99. 99.
    Warren G (1993) Membrane partitioning during cell division. Annu Rev Biochem 62:323–348PubMedGoogle Scholar
  100. 100.
    Bonneau AM, Sonenberg N (1987) Involvement of the 24-kDa cap-binding protein in regulation of protein synthesis in mitosis. J Biol Chem 262(23):11134–11139PubMedGoogle Scholar
  101. 101.
    Thiel V, Siddell SG (1994) Internal ribosome entry in the coding region of murine hepatitis virus mRNA 5. J Gen Virol 75(Pt 11):3041–3046PubMedGoogle Scholar
  102. 102.
    Nishioka WK, Welsh RM (1994) Susceptibility to cytotoxic T lymphocyte-induced apoptosis is a function of the proliferative status of the target. J Exp Med 179(2):769–774PubMedGoogle Scholar
  103. 103.
    Johnston JB, Wang G, Barrett JW, Nazarian SH, Colwill K, Moran M, McFadden G (2005) Myxoma virus M-T5 protects infected cells from the stress of cell cycle arrest through its interaction with host cell cullin-1. J Virol 79(16):10750–10763PubMedCentralPubMedGoogle Scholar
  104. 104.
    Gearhart TL, Bouchard MJ (2010) The hepatitis B virus X protein modulates hepatocyte proliferation pathways to stimulate viral replication. J Virol 84(6):2675–2686PubMedCentralPubMedGoogle Scholar
  105. 105.
    Ashfaq UA, Javed T, Rehman S, Nawaz Z, Riazuddin S (2011) An overview of HCV molecular biology, replication and immune responses. Virol J 8:161PubMedCentralPubMedGoogle Scholar
  106. 106.
    Lindenbach BD, Rice CM (2005) Unravelling hepatitis C virus replication from genome to function. Nature 436(7053):933–938PubMedGoogle Scholar
  107. 107.
    Sy T, Jamal MM (2006) Epidemiology of hepatitis C virus (HCV) infection. Int J Med Sci 3(2):41–46PubMedCentralPubMedGoogle Scholar
  108. 108.
    Rosen HR (2011) Clinical practice. Chronic hepatitis C infection. N Engl J Med 364(25):2429–2438PubMedGoogle Scholar
  109. 109.
    Liang TJ, Ghany MG (2013) Current and future therapies for hepatitis C virus infection. N Engl J Med 368(20):1907–1917PubMedCentralPubMedGoogle Scholar
  110. 110.
    Munir S, Saleem S, Idrees M, Tariq A, Butt S, Rauff B, Hussain A, Badar S, Naudhani M, Fatima Z, Ali M, Ali L, Akram M, Aftab M, Khubaib B, Awan Z (2010) Hepatitis C treatment: current and future perspectives. Virol J 7:296PubMedCentralPubMedGoogle Scholar
  111. 111.
    Ray S, Bailey J, Thomas D (2013) Hepatitis C virus. In: Knipe DM, Howley PM (eds) Fields virology, 6th edn. Lippincot Williams and Wilkins, Philadelphia, PA, pp 795–824Google Scholar
  112. 112.
    Ghosh AK, Steele R, Meyer K, Ray R, Ray RB (1999) Hepatitis C virus NS5A protein modulates cell cycle regulatory genes and promotes cell growth. J Gen Virol 80(Pt 5):1179–1183PubMedGoogle Scholar
  113. 113.
    Park SH, Lim JS, Lim SY, Tiwari I, Jang KL (2011) Hepatitis C virus Core protein stimulates cell growth by down-regulating p16 expression via DNA methylation. Cancer Lett 310(1):61–68PubMedGoogle Scholar
  114. 114.
    Tsukiyama-Kohara K, Tone S, Maruyama I, Inoue K, Katsume A, Nuriya H, Ohmori H, Ohkawa J, Taira K, Hoshikawa Y, Shibasaki F, Reth M, Minatogawa Y, Kohara M (2004) Activation of the CKI-CDK-Rb-E2F pathway in full genome hepatitis C virus-expressing cells. J Biol Chem 279(15):14531–14541PubMedGoogle Scholar
  115. 115.
    Yang XJ, Liu J, Ye L, Liao QJ, Wu JG, Gao JR, She YL, Wu ZH, Ye LB (2006) HCV NS2 protein inhibits cell proliferation and induces cell cycle arrest in the S-phase in mammalian cells through down-regulation of cyclin A expression. Virus Res 121(2):134–143PubMedGoogle Scholar
  116. 116.
    Bittar C, Shrivastava S, Bhanja Chowdhury J, Rahal P, Ray RB (2013) Hepatitis C virus NS2 protein inhibits DNA damage pathway by sequestering p53 to the cytoplasm. PLoS One 8(4):e62581PubMedCentralPubMedGoogle Scholar
  117. 117.
    Shiu TY, Huang SM, Shih YL, Chu HC, Chang WK, Hsieh TY (2013) Hepatitis C virus core protein down-regulates p21(Waf1/Cip1) and inhibits curcumin-induced apoptosis through microRNA-345 targeting in human hepatoma cells. PLoS One 8(4):e61089PubMedCentralPubMedGoogle Scholar
  118. 118.
    Wang Y, Wang Y, Xu Y, Tong W, Pan T, Li J, Sun S, Shao J, Ding H, Toyoda T, Yuan Z (2011) Hepatitis C virus NS5B protein delays s phase progression in human hepatocyte-derived cells by relocalizing cyclin-dependent kinase 2-interacting protein (CINP). J Biol Chem 286(30):26603–26615PubMedCentralPubMedGoogle Scholar
  119. 119.
    Walters KA, Syder AJ, Lederer SL, Diamond DL, Paeper B, Rice CM, Katze MG (2009) Genomic analysis reveals a potential role for cell cycle perturbation in HCV-mediated apoptosis of cultured hepatocytes. PLoS Pathog 5(1):e1000269PubMedCentralPubMedGoogle Scholar
  120. 120.
    Scholle F, Li K, Bodola F, Ikeda M, Luxon BA, Lemon SM (2004) Virus-host cell interactions during hepatitis C virus RNA replication: impact of polyprotein expression on the cellular transcriptome and cell cycle association with viral RNA synthesis. J Virol 78(3):1513–1524PubMedCentralPubMedGoogle Scholar
  121. 121.
    Sarfraz S, Hamid S, Siddiqui A, Hussain S, Pervez S, Alexander G (2008) Altered expression of cell cycle and apoptotic proteins in chronic hepatitis C virus infection. BMC Microbiol 8:133PubMedCentralPubMedGoogle Scholar
  122. 122.
    Ruggieri A, Murdolo M, Harada T, Miyamura T, Rapicetta M (2004) Cell cycle perturbation in a human hepatoblastoma cell line constitutively expressing hepatitis C virus core protein. Arch Virol 149(1):61–74PubMedGoogle Scholar
  123. 123.
    Chen H, Pei R, Chen X (2013) Different response of two highly permissive cell lines upon HCV infection. Virol Sin 28(4):202–208PubMedGoogle Scholar
  124. 124.
    Cho JW, Baek WK, Suh SI, Yang SH, Chang J, Sung YC, Suh MH (2001) Hepatitis C virus core protein promotes cell proliferation through the upregulation of cyclin E expression levels. Liver 21(2):137–142PubMedGoogle Scholar
  125. 125.
    Honda M, Kaneko S, Shimazaki T, Matsushita E, Kobayashi K, Ping LH, Zhang HC, Lemon SM (2000) Hepatitis C virus core protein induces apoptosis and impairs cell-cycle regulation in stably transformed Chinese hamster ovary cells. Hepatology 31(6):1351–1359PubMedGoogle Scholar
  126. 126.
    Banerjee A, Ray RB, Ray R (2010) Oncogenic potential of hepatitis C virus proteins. Viruses 2(9):2108–2133PubMedCentralPubMedGoogle Scholar
  127. 127.
    Munakata T, Liang Y, Kim S, McGivern DR, Huibregtse J, Nomoto A, Lemon SM (2007) Hepatitis C virus induces E6AP-dependent degradation of the retinoblastoma protein. PLoS Pathog 3(9):1335–1347PubMedGoogle Scholar
  128. 128.
    Abbas T, Dutta A (2009) p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9(6):400–414PubMedCentralPubMedGoogle Scholar
  129. 129.
    Kwun HJ, Jung EY, Ahn JY, Lee MN, Jang KL (2001) p53-dependent transcriptional repression of p21(waf1) by hepatitis C virus NS3. J Gen Virol 82(Pt 9):2235–2241PubMedGoogle Scholar
  130. 130.
    Nguyen H, Mudryj M, Guadalupe M, Dandekar S (2003) Hepatitis C virus core protein expression leads to biphasic regulation of the p21 cdk inhibitor and modulation of hepatocyte cell cycle. Virology 312(1):245–253PubMedGoogle Scholar
  131. 131.
    Yao ZQ, Eisen-Vandervelde A, Ray S, Hahn YS (2003) HCV core/gC1qR interaction arrests T cell cycle progression through stabilization of the cell cycle inhibitor p27Kip1. Virology 314(1):271–282PubMedGoogle Scholar
  132. 132.
    Otsuka M, Kato N, Lan K, Yoshida H, Kato J, Goto T, Shiratori Y, Omata M (2000) Hepatitis C virus core protein enhances p53 function through augmentation of DNA binding affinity and transcriptional ability. J Biol Chem 275(44):34122–34130PubMedGoogle Scholar
  133. 133.
    Lo SY, Masiarz F, Hwang SB, Lai MM, Ou JH (1995) Differential subcellular localization of hepatitis C virus core gene products. Virology 213(2):455–461PubMedGoogle Scholar
  134. 134.
    Salvant BS, Fortunato EA, Spector DH (1998) Cell cycle dysregulation by human cytomegalovirus: influence of the cell cycle phase at the time of infection and effects on cyclin transcription. J Virol 72(5):3729–3741PubMedCentralPubMedGoogle Scholar
  135. 135.
    Burkhart DL, Sage J (2008) Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer 8(9):671–682PubMedGoogle Scholar
  136. 136.
    Marshall A, Rushbrook S, Davies SE, Morris LS, Scott IS, Vowler SL, Coleman N, Alexander G (2005) Relation between hepatocyte G1 arrest, impaired hepatic regeneration, and fibrosis in chronic hepatitis C virus infection. Gastroenterology 128(1):33–42PubMedGoogle Scholar
  137. 137.
    Marshall A, Rushbrook S, Morris LS, Scott IS, Vowler SL, Davies SE, Coleman N, Alexander G (2005) Hepatocyte expression of minichromosome maintenance protein-2 predicts fibrosis progression after transplantation for chronic hepatitis C virus: a pilot study. Liver Transpl 11(4):427–433PubMedGoogle Scholar
  138. 138.
    Fehr C, Conrad KD, Niepmann M (2012) Differential stimulation of hepatitis C virus RNA translation by microRNA-122 in different cell cycle phases. Cell Cycle 11(2):277–285PubMedCentralPubMedGoogle Scholar
  139. 139.
    Honda M, Kaneko S, Matsushita E, Kobayashi K, Abell GA, Lemon SM (2000) Cell cycle regulation of hepatitis C virus internal ribosomal entry site-directed translation. Gastroenterology 118(1):152–162PubMedGoogle Scholar
  140. 140.
    Grana X, Reddy EP (1995) Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene 11(2):211–219PubMedGoogle Scholar
  141. 141.
    Mohd Hanafiah K, Groeger J, Flaxman AD, Wiersma ST (2013) Global epidemiology of hepatitis C virus infection: new estimates of age-specific antibody to HCV seroprevalence. Hepatology 57(4):1333–1342PubMedGoogle Scholar
  142. 142.
    Dorner M, Horwitz JA, Donovan BM, Labitt RN, Budell WC, Friling T, Vogt A, Catanese MT, Satoh T, Kawai T, Akira S, Law M, Rice CM, Ploss A (2013) Completion of the entire hepatitis C virus life cycle in genetically humanized mice. Nature 501(7466):237–241PubMedGoogle Scholar
  143. 143.
    Gaston KL (2012) Small DNA tumor viruses, 4th edn. Caister Academic Press, Bristol, UKGoogle Scholar
  144. 144.
    Gatza ML, Chandhasin C, Ducu RI, Marriott SJ (2005) Impact of transforming viruses on cellular mutagenesis, genome stability, and cellular transformation. Environ Mol Mutagen 45(2–3):304–325PubMedGoogle Scholar
  145. 145.
    Flint SJ, Enquist LW, Racaniello VR, Skalka AM (2009) Transformation and oncogenesis. In: Flint SJ, Enquist LW, Racaniello VR, Skalka AM (eds) Principles of virology, vol II, 3rd edn. ASM Press, New York, NY, pp 201–248Google Scholar
  146. 146.
    Helt AM, Galloway DA (2003) Mechanisms by which DNA tumor virus oncoproteins target the Rb family of pocket proteins. Carcinogenesis 24(2):159–169PubMedGoogle Scholar
  147. 147.
    Moran E (1993) DNA tumor virus transforming proteins and the cell cycle. Curr Opin Genet Dev 3(1):63–70PubMedGoogle Scholar
  148. 148.
    Nevins JR (1994) Cell cycle targets of the DNA tumor viruses. Curr Opin Genet Dev 4(1):130–134PubMedGoogle Scholar
  149. 149.
    Sherr CJ, McCormick F (2002) The RB and p53 pathways in cancer. Cancer Cell 2(2):103–112PubMedGoogle Scholar
  150. 150.
    Polager S, Ginsberg D (2009) p53 and E2f: partners in life and death. Nat Rev Cancer 9(10):738–748PubMedGoogle Scholar
  151. 151.
    Harbour JW, Dean DC (2000) The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev 14(19):2393–2409PubMedGoogle Scholar
  152. 152.
    Henley SA, Dick FA (2012) The retinoblastoma family of proteins and their regulatory functions in the mammalian cell division cycle. Cell Div 7(1):10PubMedCentralPubMedGoogle Scholar
  153. 153.
    Raychaudhuri P, Bagchi S, Devoto SH, Kraus VB, Moran E, Nevins JR (1991) Domains of the adenovirus E1A protein required for oncogenic activity are also required for dissociation of E2F transcription factor complexes. Genes Dev 5(7):1200–1211PubMedGoogle Scholar
  154. 154.
    Liu X, Marmorstein R (2007) Structure of the retinoblastoma protein bound to adenovirus E1A reveals the molecular basis for viral oncoprotein inactivation of a tumor suppressor. Genes Dev 21(21):2711–2716PubMedCentralPubMedGoogle Scholar
  155. 155.
    Ikeda MA, Nevins JR (1993) Identification of distinct roles for separate E1A domains in disruption of E2F complexes. Mol Cell Biol 13(11):7029–7035PubMedCentralPubMedGoogle Scholar
  156. 156.
    DeCaprio JA, Ludlow JW, Figge J, Shew JY, Huang CM, Lee WH, Marsilio E, Paucha E, Livingston DM (1988) SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54(2):275–283PubMedGoogle Scholar
  157. 157.
    Zalvide J, DeCaprio JA, Stubdal H (2001) Binding of SV40 large T antigen to the retinoblastoma susceptibility gene product and related proteins. Methods Mol Biol 165:213–218PubMedGoogle Scholar
  158. 158.
    Zalvide J, DeCaprio JA (1995) Role of pRb-related proteins in simian virus 40 large-T-antigen-mediated transformation. Mol Cell Biol 15(10):5800–5810PubMedCentralPubMedGoogle Scholar
  159. 159.
    Zalvide J, Stubdal H, DeCaprio JA (1998) The J domain of simian virus 40 large T antigen is required to functionally inactivate RB family proteins. Mol Cell Biol 18(3):1408–1415PubMedCentralPubMedGoogle Scholar
  160. 160.
    Sullivan CS, Cantalupo P, Pipas JM (2000) The molecular chaperone activity of simian virus 40 large T antigen is required to disrupt Rb-E2F family complexes by an ATP-dependent mechanism. Mol Cell Biol 20(17):6233–6243PubMedCentralPubMedGoogle Scholar
  161. 161.
    Stubdal H, Zalvide J, DeCaprio JA (1996) Simian virus 40 large T antigen alters the phosphorylation state of the RB-related proteins p130 and p107. J Virol 70(5):2781–2788PubMedCentralPubMedGoogle Scholar
  162. 162.
    Pagano M, Durst M, Joswig S, Draetta G, Jansen-Durr P (1992) Binding of the human E2F transcription factor to the retinoblastoma protein but not to cyclin A is abolished in HPV-16-immortalized cells. Oncogene 7(9):1681–1686PubMedGoogle Scholar
  163. 163.
    Chellappan S, Kraus VB, Kroger B, Munger K, Howley PM, Phelps WC, Nevins JR (1992) Adenovirus E1A, simian virus 40 tumor antigen, and human papillomavirus E7 protein share the capacity to disrupt the interaction between transcription factor E2F and the retinoblastoma gene product. Proc Natl Acad Sci U S A 89(10):4549–4553PubMedCentralPubMedGoogle Scholar
  164. 164.
    Wu EW, Clemens KE, Heck DV, Munger K (1993) The human papillomavirus E7 oncoprotein and the cellular transcription factor E2F bind to separate sites on the retinoblastoma tumor suppressor protein. J Virol 67(4):2402–2407PubMedCentralPubMedGoogle Scholar
  165. 165.
    Boyer SN, Wazer DE, Band V (1996) E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res 56(20):4620–4624PubMedGoogle Scholar
  166. 166.
    Jones DL, Munger K (1997) Analysis of the p53-mediated G1 growth arrest pathway in cells expressing the human papillomavirus type 16 E7 oncoprotein. J Virol 71(4):2905–2912PubMedCentralPubMedGoogle Scholar
  167. 167.
    O’Shea CC, Fried M (2005) Modulation of the ARF-p53 pathway by the small DNA tumor viruses. Cell Cycle 4(3):449–452PubMedGoogle Scholar
  168. 168.
    Jiang D, Srinivasan A, Lozano G, Robbins PD (1993) SV40 T antigen abrogates p53-mediated transcriptional activity. Oncogene 8(10):2805–2812PubMedGoogle Scholar
  169. 169.
    Segawa K, Minowa A, Sugasawa K, Takano T, Hanaoka F (1993) Abrogation of p53-mediated transactivation by SV40 large T antigen. Oncogene 8(3):543–548PubMedGoogle Scholar
  170. 170.
    Mietz JA, Unger T, Huibregtse JM, Howley PM (1992) The transcriptional transactivation function of wild-type p53 is inhibited by SV40 large T-antigen and by HPV-16 E6 oncoprotein. EMBO J 11(13):5013–5020PubMedCentralPubMedGoogle Scholar
  171. 171.
    Lane DP, Crawford LV (1979) T antigen is bound to a host protein in SV40-transformed cells. Nature 278(5701):261–263PubMedGoogle Scholar
  172. 172.
    Linzer DI, Levine AJ (1979) Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17(1):43–52PubMedGoogle Scholar
  173. 173.
    Harada JN, Shevchenko A, Shevchenko A, Pallas DC, Berk AJ (2002) Analysis of the adenovirus E1B-55K-anchored proteome reveals its link to ubiquitination machinery. J Virol 76(18):9194–9206PubMedCentralPubMedGoogle Scholar
  174. 174.
    Querido E, Blanchette P, Yan Q, Kamura T, Morrison M, Boivin D, Kaelin WG, Conaway RC, Conaway JW, Branton PE (2001) Degradation of p53 by adenovirus E4orf6 and E1B55K proteins occurs via a novel mechanism involving a Cullin-containing complex. Genes Dev 15(23):3104–3117PubMedCentralPubMedGoogle Scholar
  175. 175.
    Scheffner M, Huibregtse JM, Vierstra RD, Howley PM (1993) The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75(3):495–505PubMedGoogle Scholar
  176. 176.
    Pellet PE, Roizman B (2013) Herpesviridae. In: Knipe DM, Howley PM (eds) Fields virology, 6th edn. Lippincot Williams and Wilkins, Philadelphia, PA, pp 1802–1820Google Scholar
  177. 177.
    Sandri-Goldin RM (2006) Alpha Herpesviruses: molecular and cellular biology. Caister Academic Press, Bristol, UKGoogle Scholar
  178. 178.
    Flint SJ, Enquist LW, Racaniello VR, Skalka AM Patterns of infection. In: Flint SJ, Enquist LW, Racaniello VR, Skalka AM (eds) Principles of virology vol Volume II: Pathogenesis and control, vol 2, 3rd edn. ASM Press, New York, NY, pp 134–163Google Scholar
  179. 179.
    McGeoch DJ, Rixon FJ, Davison AJ (2006) Topics in herpesvirus genomics and evolution. Virus Res 117(1):90–104PubMedGoogle Scholar
  180. 180.
    Dittmer DP, Damania B (2013) Kaposi sarcoma associated herpesvirus pathogenesis (KSHV)-an update. Curr Opin Virol 3(3):238–244PubMedGoogle Scholar
  181. 181.
    Mesri EA, Cesarman E, Boshoff C (2010) Kaposi’s sarcoma and its associated herpesvirus. Nat Rev Cancer 10(10):707–719PubMedGoogle Scholar
  182. 182.
    Cai Q, Verma SC, Lu J, Robertson ES (2010) Molecular biology of Kaposi’s sarcoma-associated herpesvirus and related oncogenesis. Adv Virus Res 78:87–142PubMedCentralPubMedGoogle Scholar
  183. 183.
    Jarviluoma A, Ojala PM (2006) Cell signaling pathways engaged by KSHV. Biochim Biophys Acta 1766(1):140–158PubMedGoogle Scholar
  184. 184.
    Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM (1995) Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med 332(18):1186–1191PubMedGoogle Scholar
  185. 185.
    Renne R, Blackbourn D, Whitby D, Levy J, Ganem D (1998) Limited transmission of Kaposi’s sarcoma-associated herpesvirus in cultured cells. J Virol 72(6):5182–5188PubMedCentralPubMedGoogle Scholar
  186. 186.
    Sarid R, Flore O, Bohenzky RA, Chang Y, Moore PS (1998) Transcription mapping of the Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) genome in a body cavity-based lymphoma cell line (BC-1). J Virol 72(2):1005–1012PubMedCentralPubMedGoogle Scholar
  187. 187.
    Direkze S, Laman H (2004) Regulation of growth signalling and cell cycle by Kaposi’s sarcoma-associated herpesvirus genes. Int J Exp Pathol 85(6):305–319PubMedCentralPubMedGoogle Scholar
  188. 188.
    Moore PS (2007) KSHV manipulation of the cell cycle and apoptosis. In: Arvin A, Campadelli-Fiume G, Mocarski E et al (eds) Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge University Press, CambridgeGoogle Scholar
  189. 189.
    Chang Y, Moore PS, Talbot SJ, Boshoff CH, Zarkowska T, Godden K, Paterson H, Weiss RA, Mittnacht S (1996) Cyclin encoded by KS herpesvirus. Nature 382(6590):410PubMedGoogle Scholar
  190. 190.
    Li M, Lee H, Yoon DW, Albrecht JC, Fleckenstein B, Neipel F, Jung JU (1997) Kaposi’s sarcoma-associated herpesvirus encodes a functional cyclin. J Virol 71(3):1984–1991PubMedCentralPubMedGoogle Scholar
  191. 191.
    Laman H, Coverley D, Krude T, Laskey R, Jones N (2001) Viral cyclin-cyclin-dependent kinase 6 complexes initiate nuclear DNA replication. Mol Cell Biol 21(2):624–635PubMedCentralPubMedGoogle Scholar
  192. 192.
    Ellis M, Chew YP, Fallis L, Freddersdorf S, Boshoff C, Weiss RA, Lu X, Mittnacht S (1999) Degradation of p27(Kip) cdk inhibitor triggered by Kaposi’s sarcoma virus cyclin-cdk6 complex. EMBO J 18(3):644–653PubMedCentralPubMedGoogle Scholar
  193. 193.
    Godden-Kent D, Talbot SJ, Boshoff C, Chang Y, Moore P, Weiss RA, Mittnacht S (1997) The cyclin encoded by Kaposi’s sarcoma-associated herpesvirus stimulates cdk6 to phosphorylate the retinoblastoma protein and histone H1. J Virol 71(6):4193–4198PubMedCentralPubMedGoogle Scholar
  194. 194.
    Laman H, Peters G, Jones N (2001) Cyclin-mediated export of human Orc1. Exp Cell Res 271(2):230–237PubMedGoogle Scholar
  195. 195.
    Swanton C, Mann DJ, Fleckenstein B, Neipel F, Peters G, Jones N (1997) Herpes viral cyclin/Cdk6 complexes evade inhibition by CDK inhibitor proteins. Nature 390(6656):184–187PubMedGoogle Scholar
  196. 196.
    Kaldis P, Ojala PM, Tong L, Makela TP, Solomon MJ (2001) CAK-independent activation of CDK6 by a viral cyclin. Mol Biol Cell 12(12):3987–3999PubMedCentralPubMedGoogle Scholar
  197. 197.
    Sarek G, Jarviluoma A, Ojala PM (2006) KSHV viral cyclin inactivates p27KIP1 through Ser10 and Thr187 phosphorylation in proliferating primary effusion lymphomas. Blood 107(2):725–732PubMedGoogle Scholar
  198. 198.
    Mann DJ, Child ES, Swanton C, Laman H, Jones N (1999) Modulation of p27(Kip1) levels by the cyclin encoded by Kaposi’s sarcoma-associated herpesvirus. EMBO J 18(3):654–663PubMedCentralPubMedGoogle Scholar
  199. 199.
    Ojala PM, Tiainen M, Salven P, Veikkola T, Castanos-Velez E, Sarid R, Biberfeld P, Makela TP (1999) Kaposi’s sarcoma-associated herpesvirus-encoded v-cyclin triggers apoptosis in cells with high levels of cyclin-dependent kinase 6. Cancer Res 59(19):4984–4989PubMedGoogle Scholar
  200. 200.
    Verschuren EW, Klefstrom J, Evan GI, Jones N (2002) The oncogenic potential of Kaposi’s sarcoma-associated herpesvirus cyclin is exposed by p53 loss in vitro and in vivo. Cancer Cell 2(3):229–241PubMedGoogle Scholar
  201. 201.
    Verschuren EW, Hodgson JG, Gray JW, Kogan S, Jones N, Evan GI (2004) The role of p53 in suppression of KSHV cyclin-induced lymphomagenesis. Cancer Res 64(2):581–589PubMedGoogle Scholar
  202. 202.
    Radkov SA, Kellam P, Boshoff C (2000) The latent nuclear antigen of Kaposi sarcoma-associated herpesvirus targets the retinoblastoma-E2F pathway and with the oncogene Hras transforms primary rat cells. Nat Med 6(10):1121–1127PubMedGoogle Scholar
  203. 203.
    Cannon M, Philpott NJ, Cesarman E (2003) The Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor has broad signaling effects in primary effusion lymphoma cells. J Virol 77(1):57–67PubMedCentralPubMedGoogle Scholar
  204. 204.
    Russo JJ, Bohenzky RA, Chien MC, Chen J, Yan M, Maddalena D, Parry JP, Peruzzi D, Edelman IS, Chang Y, Moore PS (1996) Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci U S A 93(25):14862–14867PubMedCentralPubMedGoogle Scholar
  205. 205.
    Seaman WT, Ye D, Wang RX, Hale EE, Weisse M, Quinlivan EB (1999) Gene expression from the ORF50/K8 region of Kaposi’s sarcoma-associated herpesvirus. Virology 263(2):436–449PubMedGoogle Scholar
  206. 206.
    Wang SE, Wu FY, Yu Y, Hayward GS (2003) CCAAT/enhancer-binding protein-alpha is induced during the early stages of Kaposi’s sarcoma-associated herpesvirus (KSHV) lytic cycle reactivation and together with the KSHV replication and transcription activator (RTA) cooperatively stimulates the viral RTA, MTA, and PAN promoters. J Virol 77(17):9590–9612PubMedCentralPubMedGoogle Scholar
  207. 207.
    Wang SE, Wu FY, Fujimuro M, Zong J, Hayward SD, Hayward GS (2003) Role of CCAAT/enhancer-binding protein alpha (C/EBPalpha) in activation of the Kaposi’s sarcoma-associated herpesvirus (KSHV) lytic-cycle replication-associated protein (RAP) promoter in cooperation with the KSHV replication and transcription activator (RTA) and RAP. J Virol 77(1):600–623PubMedCentralPubMedGoogle Scholar
  208. 208.
    Wu FY, Wang SE, Tang QQ, Fujimuro M, Chiou CJ, Zheng Q, Chen H, Hayward SD, Lane MD, Hayward GS (2003) Cell cycle arrest by Kaposi’s sarcoma-associated herpesvirus replication-associated protein is mediated at both the transcriptional and posttranslational levels by binding to CCAAT/enhancer-binding protein alpha and p21(CIP-1). J Virol 77(16):8893–8914PubMedCentralPubMedGoogle Scholar
  209. 209.
    Izumiya Y, Lin SF, Ellison TJ, Levy AM, Mayeur GL, Izumiya C, Kung HJ (2003) Cell cycle regulation by Kaposi’s sarcoma-associated herpesvirus K-bZIP: direct interaction with cyclin-CDK2 and induction of G1 growth arrest. J Virol 77(17):9652–9661PubMedCentralPubMedGoogle Scholar
  210. 210.
    Maeda E, Akahane M, Kiryu S, Kato N, Yoshikawa T, Hayashi N, Aoki S, Minami M, Uozaki H, Fukayama M, Ohtomo K (2009) Spectrum of Epstein–Barr virus-related diseases: a pictorial review. Jpn J Radiol 27(1):4–19PubMedGoogle Scholar
  211. 211.
    Young LS, Rickinson AB (2004) Epstein–Barr virus: 40 years on. Nat Rev Cancer 4(10):757–768PubMedGoogle Scholar
  212. 212.
    Arvanitakis L, Yaseen N, Sharma S (1995) Latent membrane protein-1 induces cyclin D2 expression, pRb hyperphosphorylation, and loss of TGF-beta 1-mediated growth inhibition in EBV-positive B cells. J Immunol 155(3):1047–1056PubMedGoogle Scholar
  213. 213.
    Dirmeier U, Hoffmann R, Kilger E, Schultheiss U, Briseno C, Gires O, Kieser A, Eick D, Sugden B, Hammerschmidt W (2005) Latent membrane protein 1 of Epstein–Barr virus coordinately regulates proliferation with control of apoptosis. Oncogene 24(10):1711–1717PubMedGoogle Scholar
  214. 214.
    Parker GA, Crook T, Bain M, Sara EA, Farrell PJ, Allday MJ (1996) Epstein–Barr virus nuclear antigen (EBNA)3C is an immortalizing oncoprotein with similar properties to adenovirus E1A and papillomavirus E7. Oncogene 13(12):2541–2549PubMedGoogle Scholar
  215. 215.
    Saha A, Halder S, Upadhyay SK, Lu J, Kumar P, Murakami M, Cai Q, Robertson ES (2011) Epstein–Barr virus nuclear antigen 3C facilitates G1-S transition by stabilizing and enhancing the function of cyclin D1. PLoS Pathog 7(2):e1001275PubMedCentralPubMedGoogle Scholar
  216. 216.
    Fukuda M, Satoh TA, Takanashi M, Hirai K, Ohnishi E, Sairenji T (2000) Inhibition of cell growth and Epstein–Barr virus reactivation by CD40 stimulation in Epstein–Barr virus-transformed B cells. Viral Immunol 13(2):215–229PubMedGoogle Scholar
  217. 217.
    Rodriguez A, Armstrong M, Dwyer D, Flemington E (1999) Genetic dissection of cell growth arrest functions mediated by the Epstein–Barr virus lytic gene product, Zta. J Virol 73(11):9029–9038PubMedCentralPubMedGoogle Scholar
  218. 218.
    Cayrol C, Flemington EK (1996) The Epstein–Barr virus bZIP transcription factor Zta causes G0/G1 cell cycle arrest through induction of cyclin-dependent kinase inhibitors. EMBO J 15(11):2748–2759PubMedCentralPubMedGoogle Scholar
  219. 219.
    Swenson JJ, Mauser AE, Kaufmann WK, Kenney SC (1999) The Epstein–Barr virus protein BRLF1 activates S phase entry through E2F1 induction. J Virol 73(8):6540–6550PubMedCentralPubMedGoogle Scholar
  220. 220.
    Michaelis M, Doerr HW, Cinatl J (2009) The story of human cytomegalovirus and cancer: increasing evidence and open questions. Neoplasia 11(1):1–9PubMedCentralPubMedGoogle Scholar
  221. 221.
    Huang ES, Johnson RA (2000) Human cytomegalovirus—no longer just a DNA virus. Nat Med 6(8):863–864PubMedGoogle Scholar
  222. 222.
    Castillo JP, Kowalik TF (2004) HCMV infection: modulating the cell cycle and cell death. Int Rev Immunol 23(1–2):113–139PubMedGoogle Scholar
  223. 223.
    Albrecht T, Nachtigal M, St Jeor SC, Rapp F (1976) Induction of cellular DNA synthesis and increased mitotic activity in syrian hamster embryo cells abortively infected with human cytomegalovirus. J Gen Virol 30(2):167–177PubMedGoogle Scholar
  224. 224.
    Gonczol E, Plotkin SA (1984) Cells infected with human cytomegalovirus release a factor(s) that stimulates cell DNA synthesis. J Gen Virol 65(Pt 10):1833–1837PubMedGoogle Scholar
  225. 225.
    Sinclair J, Baillie J, Bryant L, Caswell R (2000) Human cytomegalovirus mediates cell cycle progression through G(1) into early S phase in terminally differentiated cells. J Gen Virol 81(Pt 6):1553–1565PubMedGoogle Scholar
  226. 226.
    Dittmer D, Mocarski ES (1997) Human cytomegalovirus infection inhibits G1/S transition. J Virol 71(2):1629–1634PubMedCentralPubMedGoogle Scholar
  227. 227.
    Bresnahan WA, Boldogh I, Thompson EA, Albrecht T (1996) Human cytomegalovirus inhibits cellular DNA synthesis and arrests productively infected cells in late G1. Virology 224(1):150–160PubMedGoogle Scholar
  228. 228.
    Lu M, Shenk T (1996) Human cytomegalovirus infection inhibits cell cycle progression at multiple points, including the transition from G1 to S. J Virol 70(12):8850–8857PubMedCentralPubMedGoogle Scholar
  229. 229.
    Lu M, Shenk T (1999) Human cytomegalovirus UL69 protein induces cells to accumulate in G1 phase of the cell cycle. J Virol 73(1):676–683PubMedCentralPubMedGoogle Scholar
  230. 230.
    Wiebusch L, Hagemeier C (1999) Human cytomegalovirus 86-kilodalton IE2 protein blocks cell cycle progression in G(1). J Virol 73(11):9274–9283PubMedCentralPubMedGoogle Scholar
  231. 231.
    Hume AJ, Finkel JS, Kamil JP, Coen DM, Culbertson MR, Kalejta RF (2008) Phosphorylation of retinoblastoma protein by viral protein with cyclin-dependent kinase function. Science 320(5877):797–799PubMedGoogle Scholar
  232. 232.
    Kalejta RF, Bechtel JT, Shenk T (2003) Human cytomegalovirus pp 71 stimulates cell cycle progression by inducing the proteasome-dependent degradation of the retinoblastoma family of tumor suppressors. Mol Cell Biol 23(6):1885–1895PubMedCentralPubMedGoogle Scholar
  233. 233.
    Kalejta RF, Shenk T (2003) Proteasome-dependent, ubiquitin-independent degradation of the Rb family of tumor suppressors by the human cytomegalovirus pp 71 protein. Proc Natl Acad Sci U S A 100(6):3263–3268PubMedCentralPubMedGoogle Scholar
  234. 234.
    Kalejta RF, Shenk T (2003) The human cytomegalovirus UL82 gene product (pp 71) accelerates progression through the G1 phase of the cell cycle. J Virol 77(6):3451–3459PubMedCentralPubMedGoogle Scholar
  235. 235.
    Hagemeier C, Caswell R, Hayhurst G, Sinclair J, Kouzarides T (1994) Functional interaction between the HCMV IE2 transactivator and the retinoblastoma protein. EMBO J 13(12):2897–2903PubMedCentralPubMedGoogle Scholar
  236. 236.
    Fortunato EA, Sommer MH, Yoder K, Spector DH (1997) Identification of domains within the human cytomegalovirus major immediate-early 86-kilodalton protein and the retinoblastoma protein required for physical and functional interaction with each other. J Virol 71(11):8176–8185PubMedCentralPubMedGoogle Scholar
  237. 237.
    Bresnahan WA, Albrecht T, Thompson EA (1998) The cyclin E promoter is activated by human cytomegalovirus 86-kDa immediate early protein. J Biol Chem 273(34):22075–22082PubMedGoogle Scholar
  238. 238.
    Chayavichitsilp P, Buckwalter JV, Krakowski AC, Friedlander SF (2009) Herpes simplex. Pediatr Rev 30(4):119–129, quiz 130PubMedGoogle Scholar
  239. 239.
    Song B, Liu JJ, Yeh KC, Knipe DM (2000) Herpes simplex virus infection blocks events in the G1 phase of the cell cycle. Virology 267(2):326–334PubMedGoogle Scholar
  240. 240.
    de Bruyn Kops A, Knipe DM (1988) Formation of DNA replication structures in herpes virus-infected cells requires a viral DNA binding protein. Cell 55(5):857–868PubMedGoogle Scholar
  241. 241.
    Ehmann GL, McLean TI, Bachenheimer SL (2000) Herpes simplex virus type 1 infection imposes a G(1)/S block in asynchronously growing cells and prevents G(1) entry in quiescent cells. Virology 267(2):335–349PubMedGoogle Scholar
  242. 242.
    Olgiate J, Ehmann GL, Vidyarthi S, Hilton MJ, Bachenheimer SL (1999) Herpes simplex virus induces intracellular redistribution of E2F4 and accumulation of E2F pocket protein complexes. Virology 258(2):257–270PubMedGoogle Scholar
  243. 243.
    Hobbs WE 2nd, DeLuca NA (1999) Perturbation of cell cycle progression and cellular gene expression as a function of herpes simplex virus ICP0. J Virol 73(10):8245–8255PubMedCentralPubMedGoogle Scholar
  244. 244.
    Lomonte P, Everett RD (1999) Herpes simplex virus type 1 immediate-early protein Vmw110 inhibits progression of cells through mitosis and from G(1) into S phase of the cell cycle. J Virol 73(11):9456–9467PubMedCentralPubMedGoogle Scholar
  245. 245.
    Diwan P, Lacasse JJ, Schang LM (2004) Roscovitine inhibits activation of promoters in herpes simplex virus type 1 genomes independently of promoter-specific factors. J Virol 78(17):9352–9365PubMedCentralPubMedGoogle Scholar
  246. 246.
    Schang LM, Phillips J, Schaffer PA (1998) Requirement for cellular cyclin-dependent kinases in herpes simplex virus replication and transcription. J Virol 72(7):5626–5637PubMedCentralPubMedGoogle Scholar
  247. 247.
    Durand LO, Roizman B (2008) Role of cdk9 in the optimization of expression of the genes regulated by ICP22 of herpes simplex virus 1. J Virol 82(21):10591–10599PubMedCentralPubMedGoogle Scholar
  248. 248.
    Davido DJ, Von Zagorski WF, Maul GG, Schaffer PA (2003) The differential requirement for cyclin-dependent kinase activities distinguishes two functions of herpes simplex virus type 1 ICP0. J Virol 77(23):12603–12616PubMedCentralPubMedGoogle Scholar
  249. 249.
    Hossain A, Holt T, Ciacci-Zanella J, Jones C (1997) Analysis of cyclin-dependent kinase activity after herpes simplex virus type 2 infection. J Gen Virol 78(Pt 12):3341–3348PubMedGoogle Scholar
  250. 250.
    Seeger C, Mason WS, Zoulim F (2007) Hepadnaviruses. In: Knipe DM, Howley PM (eds) Fields virology, 5th edn. Lippincot Williams and Wilkins, Philadelphia, PA, pp 2977–3029Google Scholar
  251. 251.
    Block TM, Mehta AS, Fimmel CJ, Jordan R (2003) Molecular viral oncology of hepatocellular carcinoma. Oncogene 22(33):5093–5107PubMedGoogle Scholar
  252. 252.
    Nguyen VT, Law MG, Dore GJ (2009) Hepatitis B-related hepatocellular carcinoma: epidemiological characteristics and disease burden. J Viral Hepat 16(7):453–463PubMedGoogle Scholar
  253. 253.
    Madden CR, Slagle BL (2001) Stimulation of cellular proliferation by hepatitis B virus X protein. Dis Markers 17(3):153–157PubMedCentralPubMedGoogle Scholar
  254. 254.
    Friedrich B, Wollersheim M, Brandenburg B, Foerste R, Will H, Hildt E (2005) Induction of anti-proliferative mechanisms in hepatitis B virus producing cells. J Hepatol 43(4):696–703PubMedGoogle Scholar
  255. 255.
    Wang T, Zhao R, Wu Y, Kong D, Zhang L, Wu D, Li C, Zhang C, Yu Z, Jin X (2011) Hepatitis B virus induces G1 phase arrest by regulating cell cycle genes in HepG2.2.15 cells. Virol J 8:231PubMedCentralPubMedGoogle Scholar
  256. 256.
    Chin R, Earnest-Silveira L, Koeberlein B, Franz S, Zentgraf H, Dong X, Gowans E, Bock CT, Torresi J (2007) Modulation of MAPK pathways and cell cycle by replicating hepatitis B virus: factors contributing to hepatocarcinogenesis. J Hepatol 47(3):325–337PubMedGoogle Scholar
  257. 257.
    Casciano J, Bagga S, Yang B, Bouchard M (2012) Modulation of cell proliferation pathways by the hepatitis B virus X protein: a potential contributor to the development of hepatocellular carcinoma. In: Lau JWY (ed) Hepatocellular carcinoma-basic research. InTech, Rijeka, Croatia, pp 103–152Google Scholar
  258. 258.
    Huang YQ, Wang LW, Yan SN, Gong ZJ (2004) Effects of cell cycle on telomerase activity and on hepatitis B virus replication in HepG2 2.2.15 cells. Hepatobiliary Pancreat Dis Int 3(4):543–547PubMedGoogle Scholar
  259. 259.
    Ozer A, Khaoustov VI, Mearns M, Lewis DE, Genta RM, Darlington GJ, Yoffe B (1996) Effect of hepatocyte proliferation and cellular DNA synthesis on hepatitis B virus replication. Gastroenterology 110(5):1519–1528PubMedGoogle Scholar
  260. 260.
    Guidotti LG, Matzke B, Chisari FV (1997) Hepatitis B virus replication is cell cycle independent during liver regeneration in transgenic mice. J Virol 71(6):4804–4808PubMedCentralPubMedGoogle Scholar
  261. 261.
    Guidotti LG, Matzke B, Schaller H, Chisari FV (1995) High-level hepatitis B virus replication in transgenic mice. J Virol 69(10):6158–6169PubMedCentralPubMedGoogle Scholar
  262. 262.
    Bouchard MJ, Schneider RJ (2004) The enigmatic X gene of hepatitis B virus. J Virol 78(23):12725–12734PubMedCentralPubMedGoogle Scholar
  263. 263.
    Benhenda S, Cougot D, Buendia MA, Neuveut C (2009) Hepatitis B virus X protein molecular functions and its role in virus life cycle and pathogenesis. Adv Cancer Res 103:75–109PubMedGoogle Scholar
  264. 264.
    Bouchard M, Giannakopoulos S, Wang EH, Tanese N, Schneider RJ (2001) Hepatitis B virus HBx protein activation of cyclin A-cyclin-dependent kinase 2 complexes and G1 transit via a Src kinase pathway. J Virol 75(9):4247–4257PubMedCentralPubMedGoogle Scholar
  265. 265.
    Benn J, Schneider RJ (1994) Hepatitis B virus HBx protein activates Ras-GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade. Proc Natl Acad Sci U S A 91(22):10350–10354PubMedCentralPubMedGoogle Scholar
  266. 266.
    Benn J, Schneider RJ (1995) Hepatitis B virus HBx protein deregulates cell cycle checkpoint controls. Proc Natl Acad Sci U S A 92(24):11215–11219PubMedCentralPubMedGoogle Scholar
  267. 267.
    Koike K, Moriya K, Yotsuyanagi H, Iino S, Kurokawa K (1994) Induction of cell cycle progression by hepatitis B virus HBx gene expression in quiescent mouse fibroblasts. J Clin Invest 94(1):44–49PubMedCentralPubMedGoogle Scholar
  268. 268.
    Lee S, Tarn C, Wang WH, Chen S, Hullinger RL, Andrisani OM (2002) Hepatitis B virus X protein differentially regulates cell cycle progression in X-transforming versus nontransforming hepatocyte (AML12) cell lines. J Biol Chem 277(10):8730–8740PubMedGoogle Scholar
  269. 269.
    Chen HY, Tang NH, Lin N, Chen ZX, Wang XZ (2008) Hepatitis B virus X protein induces apoptosis and cell cycle deregulation through interfering with DNA repair and checkpoint responses. Hepatol Res 38(2):174–182PubMedGoogle Scholar
  270. 270.
    Mukherji A, Janbandhu VC, Kumar V (2007) HBx-dependent cell cycle deregulation involves interaction with cyclin E/A-cdk2 complex and destabilization of p27Kip1. Biochem J 401(1):247–256PubMedCentralPubMedGoogle Scholar
  271. 271.
    Singh AK, Swarnalatha M, Kumar V (2011) c-ETS1 facilitates G1/S-phase transition by up-regulating cyclin E and CDK2 genes and cooperates with hepatitis B virus X protein for their deregulation. J Biol Chem 286(25):21961–21970PubMedCentralPubMedGoogle Scholar
  272. 272.
    Zhang JL, Zhao WG, Wu KL, Wang K, Zhang X, Gu CF, Li Y, Zhu Y, Wu JG (2005) Human hepatitis B virus X protein promotes cell proliferation and inhibits cell apoptosis through interacting with a serine protease Hepsin. Arch Virol 150(4):721–741PubMedGoogle Scholar
  273. 273.
    Wu JC, Merlino G, Cveklova K, Mosinger B Jr, Fausto N (1994) Autonomous growth in serum-free medium and production of hepatocellular carcinomas by differentiated hepatocyte lines that overexpress transforming growth factor alpha 1. Cancer Res 54(22):5964–5973PubMedGoogle Scholar
  274. 274.
    Tarn C, Bilodeau ML, Hullinger RL, Andrisani OM (1999) Differential immediate early gene expression in conditional hepatitis B virus pX-transforming versus nontransforming hepatocyte cell lines. J Biol Chem 274(4):2327–2336PubMedGoogle Scholar
  275. 275.
    Wu JC, Merlino G, Fausto N (1994) Establishment and characterization of differentiated, nontransformed hepatocyte cell lines derived from mice transgenic for transforming growth factor alpha. Proc Natl Acad Sci U S A 91(2):674–678PubMedCentralPubMedGoogle Scholar
  276. 276.
    Jung JK, Arora P, Pagano JS, Jang KL (2007) Expression of DNA methyltransferase 1 is activated by hepatitis B virus X protein via a regulatory circuit involving the p16INK4a-cyclin D1-CDK 4/6-pRb-E2F1 pathway. Cancer Res 67(12):5771–5778PubMedGoogle Scholar
  277. 277.
    Park SG, Chung C, Kang H, Kim JY, Jung G (2006) Up-regulation of cyclin D1 by HBx is mediated by NF-kappaB2/BCL3 complex through kappaB site of cyclin D1 promoter. J Biol Chem 281(42):31770–31777PubMedGoogle Scholar
  278. 278.
    Zhu R, Li BZ, Li H, Ling YQ, Hu XQ, Zhai WR, Zhu HG (2007) Association of p16INK4A hypermethylation with hepatitis B virus X protein expression in the early stage of HBV-associated hepatocarcinogenesis. Pathol Int 57(6):328–336PubMedGoogle Scholar
  279. 279.
    Zhu YZ, Zhu R, Fan J, Pan Q, Li H, Chen Q, Zhu HG (2010) Hepatitis B virus X protein induces hypermethylation of p16(INK4A) promoter via DNA methyltransferases in the early stage of HBV-associated hepatocarcinogenesis. J Viral Hepat 17(2):98–107PubMedGoogle Scholar
  280. 280.
    Ahn JY, Jung EY, Kwun HJ, Lee CW, Sung YC, Jang KL (2002) Dual effects of hepatitis B virus X protein on the regulation of cell-cycle control depending on the status of cellular p53. J Gen Virol 83(Pt 11):2765–2772PubMedGoogle Scholar
  281. 281.
    Park US, Park SK, Lee YI, Park JG, Lee YI (2000) Hepatitis B virus-X protein upregulates the expression of p21waf1/cip1 and prolongs G1 → S transition via a p53-independent pathway in human hepatoma cells. Oncogene 19(30):3384–3394PubMedGoogle Scholar
  282. 282.
    Leach JK, Qiao L, Fang Y, Han SL, Gilfor D, Fisher PB, Grant S, Hylemon PB, Peterson D, Dent P (2003) Regulation of p21 and p27 expression by the hepatitis B virus X protein and the alternate initiation site X proteins, AUG2 and AUG3. J Gastroenterol Hepatol 18(4):376–385PubMedGoogle Scholar
  283. 283.
    Qiao L, Leach K, McKinstry R, Gilfor D, Yacoub A, Park JS, Grant S, Hylemon PB, Fisher PB, Dent P (2001) Hepatitis B virus X protein increases expression of p21(Cip-1/WAF1/MDA6) and p27(Kip-1) in primary mouse hepatocytes, leading to reduced cell cycle progression. Hepatology 34(5):906–917PubMedGoogle Scholar
  284. 284.
    Gearhart TL, Bouchard MJ (2011) The hepatitis B virus HBx protein modulates cell cycle regulatory proteins in cultured primary human hepatocytes. Virus Res 155(1):363–367PubMedCentralPubMedGoogle Scholar
  285. 285.
    Gearhart TL, Bouchard MJ (2010) Replication of the hepatitis B virus requires a calcium-dependent HBx-induced G1 phase arrest of hepatocytes. Virology 407(1):14–25PubMedCentralPubMedGoogle Scholar
  286. 286.
    Yamashita M, Emerman M (2006) Retroviral infection of non-dividing cells: old and new perspectives. Virology 344(1):88–93PubMedGoogle Scholar
  287. 287.
    Ford HL, Parade AB (1999) Cancer and the cell cycle. J Cell Biochem 32–33(suppl): 166–172Google Scholar
  288. 288.
    Tralhao JG, Roudier J, Morosan S, Giannini C, Tu H, Goulenok C, Carnot F, Zavala F, Joulin V, Kremsdorf D, Brechot C (2002) Paracrine in vivo inhibitory effects of hepatitis B virus X protein (HBx) on liver cell proliferation: an alternative mechanism of HBx-related pathogenesis. Proc Natl Acad Sci U S A 99(10):6991–6996PubMedCentralPubMedGoogle Scholar
  289. 289.
    Wu BK, Li CC, Chen HJ, Chang JL, Jeng KS, Chou CK, Hsu MT, Tsai TF (2006) Blocking of G1/S transition and cell death in the regenerating liver of Hepatitis B virus X protein transgenic mice. Biochem Biophys Res Commun 340(3):916–928PubMedGoogle Scholar
  290. 290.
    Hodgson AJ, Keasler VV, Slagle BL (2008) Premature cell cycle entry induced by hepatitis B virus regulatory HBx protein during compensatory liver regeneration. Cancer Res 68(24):10341–10348PubMedCentralPubMedGoogle Scholar
  291. 291.
    Quetier I, Brezillon N, Duriez M, Massinet H, Giang E, Ahodantin J, Lamant C, Brunelle MN, Soussan P, Kremsdorf D (2013) Hepatitis B virus HBx protein impairs liver regeneration through enhanced expression of IL-6 in transgenic mice. J Hepatol 59(2):285–291PubMedGoogle Scholar
  292. 292.
    Mahieux R, Gessain A (2007) Adult T-cell leukemia/lymphoma and HTLV-1. Curr Hematol Malig Rep 2(4):257–264PubMedGoogle Scholar
  293. 293.
    Jadoul M, Poignet JL, Geddes C, Locatelli F, Medin C, Krajewska M, Barril G, Scheuermann E, Sonkodi S, Goubau P, HCV Collaborative Group (2004) The changing epidemiology of hepatitis C virus (HCV) infection in haemodialysis: European multicentre study. Nephrol Dial Transplant 19(4):904–909PubMedGoogle Scholar
  294. 294.
    Matsuoka M, Jeang KT (2007) Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation. Nat Rev Cancer 7(4):270–280PubMedGoogle Scholar
  295. 295.
    Hinuma Y, Nagata K, Hanaoka M, Nakai M, Matsumoto T, Kinoshita KI, Shirakawa S, Miyoshi I (1981) Adult T-cell leukemia: antigen in an ATL cell line and detection of antibodies to the antigen in human sera. Proc Natl Acad Sci U S A 78(10):6476–6480PubMedCentralPubMedGoogle Scholar
  296. 296.
    Yoshida M, Seiki M, Yamaguchi K, Takatsuki K (1984) Monoclonal integration of human T-cell leukemia provirus in all primary tumors of adult T-cell leukemia suggests causative role of human T-cell leukemia virus in the disease. Proc Natl Acad Sci U S A 81(8):2534–2537PubMedCentralPubMedGoogle Scholar
  297. 297.
    Currer R, Van Duyne R, Jaworski E, Guendel I, Sampey G, Das R, Narayanan A, Kashanchi F (2012) HTLV tax: a fascinating multifunctional co-regulator of viral and cellular pathways. Front Microbiol 3:406PubMedCentralPubMedGoogle Scholar
  298. 298.
    Goncalves DU, Proietti FA, Ribas JG, Araujo MG, Pinheiro SR, Guedes AC, Carneiro-Proietti AB (2010) Epidemiology, treatment, and prevention of human T-cell leukemia virus type 1-associated diseases. Clin Microbiol Rev 23(3):577–589PubMedCentralPubMedGoogle Scholar
  299. 299.
    Franchini G, Nicot C, Johnson JM (2003) Seizing of T cells by human T-cell leukemia/lymphoma virus type 1. Adv Cancer Res 89:69–132PubMedGoogle Scholar
  300. 300.
    Marriot SJ, Semmes OJ (2005) Impact of HTLV-1 Tax on cell cycle progression and the cellular DNA damage repair response. Oncogene 24(39):5986–5995Google Scholar
  301. 301.
    Lemoine FJ, Marriott SJ (2001) Accelerated G(1) phase progression induced by the human T cell leukemia virus type I (HTLV-I) Tax oncoprotein. J Biol Chem 276(34):31851–31857PubMedGoogle Scholar
  302. 302.
    Ohtani K, Iwanaga R, Arai M, Huang Y, Matsumura Y, Nakamura M (2000) Cell type-specific E2F activation and cell cycle progression induced by the oncogene product Tax of human T-cell leukemia virus type I. J Biol Chem 275(15):11154–11163PubMedGoogle Scholar
  303. 303.
    Haller K, Wu Y, Derow E, Schmitt I, Jeang KT, Grassmann R (2002) Physical interaction of human T-cell leukemia virus type 1 Tax with cyclin-dependent kinase 4 stimulates the phosphorylation of retinoblastoma protein. Mol Cell Biol 22(10):3327–3338PubMedCentralPubMedGoogle Scholar
  304. 304.
    Kehn K, Fuente Cde L, Strouss K, Berro R, Jiang H, Brady J, Mahieux R, Pumfery A, Bottazzi ME, Kashanchi F (2005) The HTLV-I Tax oncoprotein targets the retinoblastoma protein for proteasomal degradation. Oncogene 24(4):525–540PubMedGoogle Scholar
  305. 305.
    Iwanaga R, Ohtani K, Hayashi T, Nakamura M (2001) Molecular mechanism of cell cycle progression induced by the oncogene product Tax of human T-cell leukemia virus type I. Oncogene 20(17):2055–2067PubMedGoogle Scholar
  306. 306.
    Suzuki T, Narita T, Uchida-Toita M, Yoshida M (1999) Down-regulation of the INK4 family of cyclin-dependent kinase inhibitors by tax protein of HTLV-1 through two distinct mechanisms. Virology 259(2):384–391PubMedGoogle Scholar
  307. 307.
    Low KG, Dorner LF, Fernando DB, Grossman J, Jeang KT, Comb MJ (1997) Human T-cell leukemia virus type 1 Tax releases cell cycle arrest induced by p16INK4a. J Virol 71(3):1956–1962PubMedCentralPubMedGoogle Scholar
  308. 308.
    Mulloy JC, Kislyakova T, Cereseto A, Casareto L, LoMonico A, Fullen J, Lorenzi MV, Cara A, Nicot C, Giam C, Franchini G (1998) Human T-cell lymphotropic/leukemia virus type 1 Tax abrogates p53-induced cell cycle arrest and apoptosis through its CREB/ATF functional domain. J Virol 72(11):8852–8860PubMedCentralPubMedGoogle Scholar
  309. 309.
    Pise-Masison CA, Choi KS, Radonovich M, Dittmer J, Kim SJ, Brady JN (1998) Inhibition of p53 transactivation function by the human T-cell lymphotropic virus type 1 Tax protein. J Virol 72(2):1165–1170PubMedCentralPubMedGoogle Scholar
  310. 310.
    Liu M, Yang L, Zhang L, Liu B, Merling R, Xia Z, Giam CZ (2008) Human T-cell leukemia virus type 1 infection leads to arrest in the G1 phase of the cell cycle. J Virol 82(17):8442–8455PubMedCentralPubMedGoogle Scholar
  311. 311.
    Baydoun HH, Pancewicz J, Bai X, Nicot C (2010) HTLV-I p30 inhibits multiple S phase entry checkpoints, decreases cyclin E-CDK2 interactions and delays cell cycle progression. Mol Cancer 9:302PubMedCentralPubMedGoogle Scholar
  312. 312.
    Bellon M, Baydoun HH, Yao Y, Nicot C (2010) HTLV-I Tax-dependent and -independent events associated with immortalization of human primary T lymphocytes. Blood 115(12):2441–2448PubMedCentralPubMedGoogle Scholar
  313. 313.
    Nicot C, Dundr M, Johnson JM, Fullen JR, Alonzo N, Fukumoto R, Princler GL, Derse D, Misteli T, Franchini G (2004) HTLV-1-encoded p30II is a post-transcriptional negative regulator of viral replication. Nat Med 10(2):197–201PubMedGoogle Scholar
  314. 314.
    Bai XT, Baydoun HH, Nicot C (2010) HTLV-I p30: a versatile protein modulating virus replication and pathogenesis. Mol Aspects Med 31(5):344–349PubMedCentralPubMedGoogle Scholar
  315. 315.
    Taylor JM, Brown M, Nejmeddine M, Kim KJ, Ratner L, Lairmore M, Nicot C (2009) Novel role for interleukin-2 receptor-Jak signaling in retrovirus transmission. J Virol 83(22):11467–11476PubMedCentralPubMedGoogle Scholar
  316. 316.
    Fukumoto R, Dundr M, Nicot C, Adams A, Valeri VW, Samelson LE, Franchini G (2007) Inhibition of T-cell receptor signal transduction and viral expression by the linker for activation of T cells-interacting p12(I) protein of human T-cell leukemia/lymphoma virus type 1. J Virol 81(17):9088–9099PubMedCentralPubMedGoogle Scholar
  317. 317.
    Albrecht B, Lairmore MD (2002) Critical role of human T-lymphotropic virus type 1 accessory proteins in viral replication and pathogenesis. Microbiol Mol Biol Rev 66(3):396–406, table of contentsPubMedCentralPubMedGoogle Scholar
  318. 318.
    Johnson JM, Nicot C, Fullen J, Ciminale V, Casareto L, Mulloy JC, Jacobson S, Franchini G (2001) Free major histocompatibility complex class I heavy chain is preferentially targeted for degradation by human T-cell leukemia/lymphotropic virus type 1 p12(I) protein. J Virol 75(13):6086–6094PubMedCentralPubMedGoogle Scholar
  319. 319.
    Fukumoto R, Andresen V, Bialuk I, Cecchinato V, Walser JC, Valeri VW, Nauroth JM, Gessain A, Nicot C, Franchini G (2009) In vivo genetic mutations define predominant functions of the human T-cell leukemia/lymphoma virus p12I protein. Blood 113(16):3726–3734PubMedCentralPubMedGoogle Scholar
  320. 320.
    Silic-Benussi M, Cavallari I, Zorzan T, Rossi E, Hiraragi H, Rosato A, Horie K, Saggioro D, Lairmore MD, Willems L, Chieco-Bianchi L, D’Agostino DM, Ciminale V (2004) Suppression of tumor growth and cell proliferation by p13II, a mitochondrial protein of human T cell leukemia virus type 1. Proc Natl Acad Sci U S A 101(17):6629–6634PubMedCentralPubMedGoogle Scholar
  321. 321.
    Kim SJ, Ding W, Albrecht B, Green PL, Lairmore MD (2003) A conserved calcineurin-binding motif in human T lymphotropic virus type 1 p12I functions to modulate nuclear factor of activated T cell activation. J Biol Chem 278(18):15550–15557PubMedGoogle Scholar
  322. 322.
    Darbinyan A, Darbinian N, Safak M, Radhakrishnan S, Giordano A, Khalili K (2002) Evidence for dysregulation of cell cycle by human polyomavirus, JCV, late auxiliary protein. Oncogene 21(36):5574–5581PubMedGoogle Scholar
  323. 323.
    Nascimento R, Parkhouse RM (2007) Murine gammaherpesvirus 68 ORF20 induces cell-cycle arrest in G2 by inhibiting the Cdc2-cyclin B complex. J Gen Virol 88(Pt 5):1446–1453PubMedGoogle Scholar
  324. 324.
    Li H, Baskaran R, Krisky DM, Bein K, Grandi P, Cohen JB, Glorioso JC (2008) Chk2 is required for HSV-1 ICP0-mediated G2/M arrest and enhancement of virus growth. Virology 375(1):13–23PubMedCentralPubMedGoogle Scholar
  325. 325.
    Knight GL, Turnell AS, Roberts S (2006) Role for Wee1 in inhibition of G2-to-M transition through the cooperation of distinct human papillomavirus type 1 E4 proteins. J Virol 80(15):7416–7426PubMedCentralPubMedGoogle Scholar
  326. 326.
    Poggioli GJ, Dermody TS, Tyler KL (2001) Reovirus-induced sigma1s-dependent G(2)/M phase cell cycle arrest is associated with inhibition of p34(cdc2). J Virol 75(16):7429–7434PubMedCentralPubMedGoogle Scholar
  327. 327.
    Patton JT (2008) Segmented double-stranded RNA viruses: structural and molecular biology. Caister Academic Press, Bristol, UKGoogle Scholar
  328. 328.
    Li L, Gu B, Zhou F, Chi J, Wang F, Peng G, Xie F, Qing J, Feng D, Lu S, Yao K (2011) Human herpesvirus 6 suppresses T cell proliferation through induction of cell cycle arrest in infected cells in the G2/M phase. J Virol 85(13):6774–6783PubMedCentralPubMedGoogle Scholar
  329. 329.
    Scarano FJ, Laffin JA, Lehman JM, Friedrich TD (1994) Simian virus 40 prevents activation of M-phase-promoting factor during lytic infection. J Virol 68(4):2355–2361PubMedCentralPubMedGoogle Scholar
  330. 330.
    Yeo KS, Mohidin TB, Ng CC (2012) Epstein–Barr virus-encoded latent membrane protein-1 upregulates 14-3-3sigma and Reprimo to confer G(2)/M phase cell cycle arrest. C R Biol 335(12):713–721PubMedGoogle Scholar
  331. 331.
    Ohki R, Nemoto J, Murasawa H, Oda E, Inazawa J, Tanaka N, Taniguchi T (2000) Reprimo, a new candidate mediator of the p53-mediated cell cycle arrest at the G2 phase. J Biol Chem 275(30):22627–22630PubMedGoogle Scholar
  332. 332.
    Mhawech P (2005) 14-3-3 proteins—an update. Cell Res 15(4):228–236PubMedGoogle Scholar
  333. 333.
    Laronga C, Yang HY, Neal C, Lee MH (2000) Association of the cyclin-dependent kinases and 14-3-3 sigma negatively regulates cell cycle progression. J Biol Chem 275(30):23106–23112PubMedGoogle Scholar
  334. 334.
    Davy CE, Jackson DJ, Raj K, Peh WL, Southern SA, Das P, Sorathia R, Laskey P, Middleton K, Nakahara T, Wang Q, Masterson PJ, Lambert PF, Cuthill S, Millar JB, Doorbar J (2005) Human papillomavirus type 16 E1 E4-induced G2 arrest is associated with cytoplasmic retention of active Cdk1/cyclin B1 complexes. J Virol 79(7):3998–4011PubMedCentralPubMedGoogle Scholar
  335. 335.
    Morita E, Tada K, Chisaka H, Asao H, Sato H, Yaegashi N, Sugamura K (2001) Human parvovirus B19 induces cell cycle arrest at G(2) phase with accumulation of mitotic cyclins. J Virol 75(16):7555–7563PubMedCentralPubMedGoogle Scholar
  336. 336.
    Fehr AR, Yu D (2013) Control the host cell cycle: viral regulation of the anaphase-promoting complex. J Virol 87(16):8818–8825PubMedCentralPubMedGoogle Scholar
  337. 337.
    Teodoro JG, Heilman DW, Parker AE, Green MR (2004) The viral protein Apoptin associates with the anaphase-promoting complex to induce G2/M arrest and apoptosis in the absence of p53. Genes Dev 18(16):1952–1957PubMedCentralPubMedGoogle Scholar
  338. 338.
    Bellanger S, Blachon S, Mechali F, Bonne-Andrea C, Thierry F (2005) High-risk but not low-risk HPV E2 proteins bind to the APC activators Cdh1 and Cdc20 and cause genomic instability. Cell Cycle 4(11):1608–1615PubMedGoogle Scholar
  339. 339.
    Tran K, Kamil JP, Coen DM, Spector DH (2010) Inactivation and disassembly of the anaphase-promoting complex during human cytomegalovirus infection is associated with degradation of the APC5 and APC4 subunits and does not require UL97-mediated phosphorylation of Cdh1. J Virol 84(20):10832–10843PubMedCentralPubMedGoogle Scholar
  340. 340.
    Fehr AR, Gualberto NC, Savaryn JP, Terhune SS, Yu D (2012) Proteasome-dependent disruption of the E3 ubiquitin ligase anaphase-promoting complex by HCMV protein pUL21a. PLoS Pathog 8(7):e1002789PubMedCentralPubMedGoogle Scholar
  341. 341.
    Everett RD, Earnshaw WC, Findlay J, Lomonte P (1999) Specific destruction of kinetochore protein CENP-C and disruption of cell division by herpes simplex virus immediate-early protein Vmw110. EMBO J 18(6):1526–1538PubMedCentralPubMedGoogle Scholar
  342. 342.
    Lomonte P, Sullivan KF, Everett RD (2001) Degradation of nucleosome-associated centromeric histone H3-like protein CENP-A induced by herpes simplex virus type 1 protein ICP0. J Biol Chem 276(8):5829–5835PubMedGoogle Scholar
  343. 343.
    Belyavskyi M, Braunagel SC, Summers MD (1998) The structural protein ODV-EC27 of Autographa californica nucleopolyhedrovirus is a multifunctional viral cyclin. Proc Natl Acad Sci U S A 95(19):11205–11210PubMedCentralPubMedGoogle Scholar
  344. 344.
    Ikeda M, Kobayashi M (1999) Cell-cycle perturbation in Sf9 cells infected with Autographa californica nucleopolyhedrovirus. Virology 258(1):176–188PubMedGoogle Scholar
  345. 345.
    Freed EO, Martin MA (2013) Human immunodeficiency viruses: replication. In: Knipe DM, Howley PM (eds) Fields virology, 6th edn. Lippincot Williams and Wilkins, Philadelphia, PA, pp 1502–1560Google Scholar
  346. 346.
    Gilbert PB, McKeague IW, Eisen G, Mullins C, Gueye NA, Mboup S, Kanki PJ (2003) Comparison of HIV-1 and HIV-2 infectivity from a prospective cohort study in Senegal. Stat Med 22(4):573–593PubMedGoogle Scholar
  347. 347.
    Sharp PM, Hahn BH (2011) Origins of HIV and the AIDS pandemic. Cold Spring Harb Perspect Med 1(1):a006841PubMedCentralPubMedGoogle Scholar
  348. 348.
    Zhao RY, Li G, Bukrinsky MI (2011) Vpr-host interactions during HIV-1 viral life cycle. J Neuroimmune Pharmacol 6(2):216–229PubMedGoogle Scholar
  349. 349.
    Goh WC, Rogel ME, Kinsey CM, Michael SF, Fultz PN, Nowak MA, Hahn BH, Emerman M (1998) HIV-1 Vpr increases viral expression by manipulation of the cell cycle: a mechanism for selection of Vpr in vivo. Nat Med 4(1):65–71PubMedGoogle Scholar
  350. 350.
    Kogan M, Rappaport J (2011) HIV-1 accessory protein Vpr: relevance in the pathogenesis of HIV and potential for therapeutic intervention. Retrovirology 8:25PubMedCentralPubMedGoogle Scholar
  351. 351.
    Zhao RY, Elder RT (2005) Viral infections and cell cycle G2/M regulation. Cell Res 15(3):143–149PubMedGoogle Scholar
  352. 352.
    Re F, Braaten D, Franke EK, Luban J (1995) Human immunodeficiency virus type 1 Vpr arrests the cell cycle in G2 by inhibiting the activation of p34cdc2-cyclin B. J Virol 69(11):6859–6864PubMedCentralPubMedGoogle Scholar
  353. 353.
    He J, Choe S, Walker R, Di Marzio P, Morgan DO, Landau NR (1995) Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity. J Virol 69(11):6705–6711PubMedCentralPubMedGoogle Scholar
  354. 354.
    Goh WC, Manel N, Emerman M (2004) The human immunodeficiency virus Vpr protein binds Cdc25C: implications for G2 arrest. Virology 318(1):337–349PubMedGoogle Scholar
  355. 355.
    Kamata M, Watanabe N, Nagaoka Y, Chen IS (2008) Human immunodeficiency virus type 1 Vpr binds to the N lobe of the Wee1 kinase domain and enhances kinase activity for CDC2. J Virol 82(12):5672–5682PubMedCentralPubMedGoogle Scholar
  356. 356.
    Yuan H, Kamata M, Xie YM, Chen IS (2004) Increased levels of Wee-1 kinase in G(2) are necessary for Vpr- and gamma irradiation-induced G(2) arrest. J Virol 78(15):8183–8190PubMedCentralPubMedGoogle Scholar
  357. 357.
    Elder RT, Yu M, Chen M, Zhu X, Yanagida M, Zhao Y (2001) HIV-1 Vpr induces cell cycle G2 arrest in fission yeast (Schizosaccharomyces pombe) through a pathway involving regulatory and catalytic subunits of PP2A and acting on both Wee1 and Cdc25. Virology 287(2):359–370PubMedGoogle Scholar
  358. 358.
    Bartz SR, Rogel ME, Emerman M (1996) Human immunodeficiency virus type 1 cell cycle control: Vpr is cytostatic and mediates G2 accumulation by a mechanism which differs from DNA damage checkpoint control. J Virol 70(4):2324–2331PubMedCentralPubMedGoogle Scholar
  359. 359.
    DeHart JL, Zimmerman ES, Ardon O, Monteiro-Filho CM, Arganaraz ER, Planelles V (2007) HIV-1 Vpr activates the G2 checkpoint through manipulation of the ubiquitin proteasome system. Virol J 4:57PubMedCentralPubMedGoogle Scholar
  360. 360.
    Belzile JP, Duisit G, Rougeau N, Mercier J, Finzi A, Cohen EA (2007) HIV-1 Vpr-mediated G2 arrest involves the DDB1-CUL4AVPRBP E3 ubiquitin ligase. PLoS Pathog 3(7):e85PubMedCentralPubMedGoogle Scholar
  361. 361.
    Schrofelbauer B, Hakata Y, Landau NR (2007) HIV-1 Vpr function is mediated by interaction with the damage-specific DNA-binding protein DDB1. Proc Natl Acad Sci U S A 104(10):4130–4135PubMedCentralPubMedGoogle Scholar
  362. 362.
    Tan L, Ehrlich E, Yu XF (2007) DDB1 and Cul4A are required for human immunodeficiency virus type 1 Vpr-induced G2 arrest. J Virol 81(19):10822–10830PubMedCentralPubMedGoogle Scholar
  363. 363.
    Mansky LM (1996) The mutation rate of human immunodeficiency virus type 1 is influenced by the vpr gene. Virology 222(2):391–400PubMedGoogle Scholar
  364. 364.
    Roshal M, Kim B, Zhu Y, Nghiem P, Planelles V (2003) Activation of the ATR-mediated DNA damage response by the HIV-1 viral protein R. J Biol Chem 278(28):25879–25886PubMedGoogle Scholar
  365. 365.
    Li G, Park HU, Liang D, Zhao RY (2010) Cell cycle G2/M arrest through an S phase-dependent mechanism by HIV-1 viral protein R. Retrovirology 7:59PubMedCentralPubMedGoogle Scholar
  366. 366.
    Li G, Elder RT, Qin K, Park HU, Liang D, Zhao RY (2007) Phosphatase type 2A-dependent and -independent pathways for ATR phosphorylation of Chk1. J Biol Chem 282(10):7287–7298PubMedGoogle Scholar
  367. 367.
    Zimmerman ES, Chen J, Andersen JL, Ardon O, Dehart JL, Blackett J, Choudhary SK, Camerini D, Nghiem P, Planelles V (2004) Human immunodeficiency virus type 1 Vpr-mediated G2 arrest requires Rad17 and Hus1 and induces nuclear BRCA1 and gamma-H2AX focus formation. Mol Cell Biol 24(21):9286–9294PubMedCentralPubMedGoogle Scholar
  368. 368.
    Zhao Y, Cao J, O’Gorman MR, Yu M, Yogev R (1996) Effect of human immunodeficiency virus type 1 protein R (vpr) gene expression on basic cellular function of fission yeast Schizosaccharomyces pombe. J Virol 70(9):5821–5826PubMedCentralPubMedGoogle Scholar
  369. 369.
    Fu DX, Kuo YL, Liu BY, Jeang KT, Giam CZ (2003) Human T-lymphotropic virus type I tax activates I-kappa B kinase by inhibiting I-kappa B kinase-associated serine/threonine protein phosphatase 2A. J Biol Chem 278(3):1487–1493PubMedGoogle Scholar
  370. 370.
    Roopchand DE, Lee JM, Shahinian S, Paquette D, Bussey H, Branton PE (2001) Toxicity of human adenovirus E4orf4 protein in Saccharomyces cerevisiae results from interactions with the Cdc55 regulatory B subunit of PP2A. Oncogene 20(38):5279–5290PubMedGoogle Scholar
  371. 371.
    Shtrichman R, Sharf R, Barr H, Dobner T, Kleinberger T (1999) Induction of apoptosis by adenovirus E4orf4 protein is specific to transformed cells and requires an interaction with protein phosphatase 2A. Proc Natl Acad Sci U S A 96(18):10080–10085PubMedCentralPubMedGoogle Scholar
  372. 372.
    Haoudi A, Daniels RC, Wong E, Kupfer G, Semmes OJ (2003) Human T-cell leukemia virus-I tax oncoprotein functionally targets a subnuclear complex involved in cellular DNA damage-response. J Biol Chem 278(39):37736–37744PubMedGoogle Scholar
  373. 373.
    Poon B, Grovit-Ferbas K, Stewart SA, Chen IS (1998) Cell cycle arrest by Vpr in HIV-1 virions and insensitivity to antiretroviral agents. Science 281(5374):266–269PubMedGoogle Scholar
  374. 374.
    Venkatesan A, Sharma R, Dasgupta A (2003) Cell cycle regulation of hepatitis C and encephalomyocarditis virus internal ribosome entry site-mediated translation in human embryonic kidney 293 cells. Virus Res 94(2):85–95PubMedGoogle Scholar
  375. 375.
    Brasey A, Lopez-Lastra M, Ohlmann T, Beerens N, Berkhout B, Darlix JL, Sonenberg N (2003) The leader of human immunodeficiency virus type 1 genomic RNA harbors an internal ribosome entry segment that is active during the G2/M phase of the cell cycle. J Virol 77(7):3939–3949PubMedCentralPubMedGoogle Scholar
  376. 376.
    Lin GY, Lamb RA (2000) The paramyxovirus simian virus 5 V protein slows progression of the cell cycle. J Virol 74(19):9152–9166PubMedCentralPubMedGoogle Scholar
  377. 377.
    Alonso-Caplen FV, Matsuoka Y, Wilcox GE, Compans RW (1984) Replication and morphogenesis of avian coronavirus in Vero cells and their inhibition by monensin. Virus Res 1(2):153–167PubMedGoogle Scholar
  378. 378.
    Lim KP, Liu DX (2001) The missing link in coronavirus assembly. Retention of the avian coronavirus infectious bronchitis virus envelope protein in the pre-Golgi compartments and physical interaction between the envelope and membrane proteins. J Biol Chem 276(20):17515–17523PubMedGoogle Scholar
  379. 379.
    Lontok E, Corse E, Machamer CE (2004) Intracellular targeting signals contribute to localization of coronavirus spike proteins near the virus assembly site. J Virol 78(11):5913–5922PubMedCentralPubMedGoogle Scholar
  380. 380.
    Machamer CE, Mentone SA, Rose JK, Farquhar MG (1990) The E1 glycoprotein of an avian coronavirus is targeted to the cis Golgi complex. Proc Natl Acad Sci U S A 87(18):6944–6948PubMedCentralPubMedGoogle Scholar
  381. 381.
    Park HU, Jeong JH, Chung JH, Brady JN (2004) Human T-cell leukemia virus type 1 Tax interacts with Chk1 and attenuates DNA-damage induced G2 arrest mediated by Chk1. Oncogene 23(29):4966–4974PubMedGoogle Scholar
  382. 382.
    Krauer KG, Burgess A, Buck M, Flanagan J, Sculley TB, Gabrielli B (2004) The EBNA-3 gene family proteins disrupt the G2/M checkpoint. Oncogene 23(7):1342–1353PubMedGoogle Scholar
  383. 383.
    Choudhuri T, Verma SC, Lan K, Murakami M, Robertson ES (2007) The ATM/ATR signaling effector Chk2 is targeted by Epstein–Barr virus nuclear antigen 3C to release the G2/M cell cycle block. J Virol 81(12):6718–6730PubMedCentralPubMedGoogle Scholar
  384. 384.
    Liu B, Hong S, Tang Z, Yu H, Giam CZ (2005) HTLV-I Tax directly binds the Cdc20-associated anaphase-promoting complex and activates it ahead of schedule. Proc Natl Acad Sci U S A 102(1):63–68PubMedCentralPubMedGoogle Scholar
  385. 385.
    Kim S, Park SY, Yong H, Famulski JK, Chae S, Lee JH, Kang CM, Saya H, Chan GK, Cho H (2008) HBV X protein targets hBubR1, which induces dysregulation of the mitotic checkpoint. Oncogene 27(24):3457–3464PubMedGoogle Scholar
  386. 386.
    Chabes AL, Pfleger CM, Kirschner MW, Thelander L (2003) Mouse ribonucleotide reductase R2 protein: a new target for anaphase-promoting complex-Cdh1-mediated proteolysis. Proc Natl Acad Sci U S A 100(7):3925–3929PubMedCentralPubMedGoogle Scholar
  387. 387.
    Wiebusch L, Bach M, Uecker R, Hagemeier C (2005) Human cytomegalovirus inactivates the G0/G1-APC/C ubiquitin ligase by Cdh1 dissociation. Cell Cycle 4(10):1435–1439PubMedGoogle Scholar
  388. 388.
    Bornholdt ZA, Noda T, Abelson DM, Halfmann P, Wood MR, Kawaoka Y, Saphire EO (2013) Structural rearrangement of Ebola Virus VP40 begets multiple functions in the virus life cycle. Cell 154(4):763–774PubMedGoogle Scholar
  389. 389.
    Ferreon AC, Ferreon JC, Wright PE, Deniz AA (2013) Modulation of allostery by protein intrinsic disorder. Nature 498(7454):390–394PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyDrexel University College of MedicinePhiladelphiaUSA

Personalised recommendations