Cell Cycle-Regulated Transcription: Effectively Using a Genomics Toolbox

  • Sara L. Bristow
  • Adam R. Leman
  • Steven B. Haase
Part of the Methods in Molecular Biology book series (MIMB, volume 1170)


The cell cycle comprises a series of temporally ordered events that occur sequentially, including DNA replication, centrosome duplication, mitosis, and cytokinesis. What are the regulatory mechanisms that ensure proper timing and coordination of events during the cell cycle? Biochemical and genetic screens have identified a number of cell-cycle regulators, and it was recognized early on that many of the genes encoding cell-cycle regulators, including cyclins, were transcribed only in distinct phases of the cell cycle. Thus, “just in time” expression is likely an important part of the mechanism that maintains the proper temporal order of cell cycle events. New high-throughput technologies for measuring transcript levels have revealed that a large percentage of the Saccharomyces cerevisiae transcriptome (~20 %) is cell cycle regulated. Similarly, a substantial fraction of the mammalian transcriptome is cell cycle-regulated. Over the past 25 years, many studies have been undertaken to determine how gene expression is regulated during the cell cycle. In this review, we discuss contemporary models for the control of cell cycle-regulated transcription, and how this transcription program is coordinated with other cell cycle events in S. cerevisiae. In addition, we address the genomic approaches and analytical methods that enabled contemporary models of cell cycle transcription. Finally, we address current and future technologies that will aid in further understanding the role of periodic transcription during cell cycle progression.

Key words

Saccharomyces cerevisiae Cell cycle Periodic transcription Transcription factor network Cyclins Cyclin-dependent kinases (CDKs) 



Members of the Haase Lab are thanked for their critical reading and comments.


  1. 1.
    Morgan DO (1997) Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13:261–291PubMedCrossRefGoogle Scholar
  2. 2.
    Morgan DO (2007) The cell cycle: principles of control. Primers in biology. New Science Press in association with Oxford University Press, London, Distributed inside North America by Sinauer Associates Publishers Sunderland, MAGoogle Scholar
  3. 3.
    Murray AW, Kirschner MW (1989) Dominoes and clocks: the union of two views of the cell cycle. Science 246(4930):614–621PubMedCrossRefGoogle Scholar
  4. 4.
    Cho RJ, Campbell MJ, Winzeler EA, Steinmetz L, Conway A, Wodicka L, Wolfsberg TG, Gabrielian AE, Landsman D, Lockhart DJ, Davis RW (1998) A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell 2(1):65–73PubMedCrossRefGoogle Scholar
  5. 5.
    Orlando DA, Lin CY, Bernard A, Wang JY, Socolar JE, Iversen ES, Hartemink AJ, Haase SB (2008) Global control of cell-cycle transcription by coupled CDK and network oscillators. Nature 453(7197):944–947PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Pramila T, Wu W, Miles S, Noble WS, Breeden LL (2006) The Forkhead transcription factor Hcm1 regulates chromosome segregation genes and fills the S-phase gap in the transcriptional circuitry of the cell cycle. Genes Dev 20(16):2266–2278PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9(12):3273–3297PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Simon I, Barnett J, Hannett N, Harbison CT, Rinaldi NJ, Volkert TL, Wyrick JJ, Zeitlinger J, Gifford DK, Jaakkola TS (2001) Serial regulation of transcriptional regulators in the yeast cell cycle. Cell 106(6):697–708PubMedCrossRefGoogle Scholar
  9. 9.
    Breeden LL (2003) Periodic transcription: a cycle within a cycle. Curr Biol 13(1):R31–R38PubMedCrossRefGoogle Scholar
  10. 10.
    McInerny CJ (2011) Cell cycle regulated gene expression in yeasts. Adv Genet 73:51–85PubMedCrossRefGoogle Scholar
  11. 11.
    Wittenberg C, Reed SI (2005) Cell cycle-dependent transcription in yeast: promoters, transcription factors, and transcriptomes. Oncogene 24(17):2746–2755PubMedCrossRefGoogle Scholar
  12. 12.
    Simmons Kovacs LA, Mayhew MB, Orlando DA, Jin Y, Li Q, Huang C, Reed SI, Mukherjee S, Haase SB (2012) Cyclin-dependent kinases are regulators and effectors of oscillations driven by a transcription factor network. Mol Cell 45(5):669–679PubMedCrossRefGoogle Scholar
  13. 13.
    Hereford LM, Osley MA, Ludwig TR 2nd, McLaughlin CS (1981) Cell-cycle regulation of yeast histone mRNA. Cell 24(2):367–375PubMedCrossRefGoogle Scholar
  14. 14.
    Nasmyth K (1983) Molecular analysis of a cell lineage. Nature 302(5910):670–676PubMedCrossRefGoogle Scholar
  15. 15.
    Storms RK, Ord RW, Greenwood MT, Mirdamadi B, Chu FK, Belfort M (1984) Cell cycle-dependent expression of thymidylate synthase in Saccharomyces cerevisiae. Mol Cell Biol 4(12):2858–2864PubMedCentralPubMedGoogle Scholar
  16. 16.
    White JHM, Barker DG, Nurse P, Johnston LH (1986) Periodic transcription as a means of regulating gene-expression during the cell-cycle – contrasting modes of expression of DNA-ligase genes in budding and fission yeast. EMBO J 5(7):1705–1709PubMedCentralPubMedGoogle Scholar
  17. 17.
    Kupiec M, Simchen G (1986) Regulation of the RAD6 gene of Saccharomyces cerevisiae in the mitotic cell cycle and in meiosis. Mol Gen Genet 203(3):538–543PubMedCrossRefGoogle Scholar
  18. 18.
    Nasmyth K, Seddon A, Ammerer G (1987) Cell cycle regulation of SW15 is required for mother-cell-specific HO transcription in yeast. Cell 49(4):549–558PubMedCrossRefGoogle Scholar
  19. 19.
    White JHM, Green SR, Barker DG, Dumas LB, Johnston LH (1987) The Cdc8 transcript is cell-cycle regulated in yeast and is expressed coordinately with Cdc9 and Cdc21 at a point preceding histone transcription. Exp Cell Res 171(1):223–231PubMedCrossRefGoogle Scholar
  20. 20.
    Johnston LH, White JH, Johnson AL, Lucchini G, Plevani P (1987) The yeast DNA polymerase I transcript is regulated in both the mitotic cell cycle and in meiosis and is also induced after DNA damage. Nucleic Acids Res 15(13):5017–5030PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Chapman JW, Johnston LH (1989) The yeast gene, DBF4, essential for entry into S phase is cell cycle regulated. Exp Cell Res 180(2):419–428PubMedCrossRefGoogle Scholar
  22. 22.
    Johnston LH, White JH, Johnson AL, Lucchini G, Plevani P (1990) Expression of the yeast DNA primase gene, PRI1, is regulated within the mitotic cell cycle and in meiosis. Mol Gen Genet 221(1):44–48PubMedCrossRefGoogle Scholar
  23. 23.
    Johnston LH, Eberly SL, Chapman JW, Araki H, Sugino A (1990) The product of the Saccharomyces cerevisiae cell cycle gene DBF2 has homology with protein kinases and is periodically expressed in the cell cycle. Mol Cell Biol 10(4):1358–1366PubMedCentralPubMedGoogle Scholar
  24. 24.
    Ramsay G (1998) DNA chips: state-of-the art. Nat Biotechnol 16(1):40–44PubMedCrossRefGoogle Scholar
  25. 25.
    de Lichtenberg U, Jensen LJ, Fausboll A, Jensen TS, Bork P, Brunak S (2005) Comparison of computational methods for the identification of cell cycle-regulated genes. Bioinformatics 21(7):1164–1171PubMedCrossRefGoogle Scholar
  26. 26.
    Rustici G, Mata J, Kivinen K, Lio P, Penkett CJ, Burns G, Hayles J, Brazma A, Nurse P, Bahler J (2004) Periodic gene expression program of the fission yeast cell cycle. Nat Genet 36(8):809–817PubMedCrossRefGoogle Scholar
  27. 27.
    Peng X, Karuturi RK, Miller LD, Lin K, Jia Y, Kondu P, Wang L, Wong LS, Liu ET, Balasubramanian MK, Liu J (2005) Identification of cell cycle-regulated genes in fission yeast. Mol Biol Cell 16(3):1026–1042PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Oliva A, Rosebrock A, Ferrezuelo F, Pyne S, Chen H, Skiena S, Futcher B, Leatherwood J (2005) The cell cycle-regulated genes of Schizosaccharomyces pombe. PLoS Biol 3(7): e225PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Cho RJ, Huang M, Campbell MJ, Dong H, Steinmetz L, Sapinoso L, Hampton G, Elledge SJ, Davis RW, Lockhart DJ (2001) Transcriptional regulation and function during the human cell cycle. Nat Genet 27(1):48–54PubMedCrossRefGoogle Scholar
  30. 30.
    Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE, Matese JC, Perou CM, Hurt MM, Brown PO, Botstein D (2002) Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell 13(6): 1977–2000PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Orlando DA, Lin CY, Bernard A, Iversen ES, Hartemink AJ, Haase SB (2007) A probabilistic model for cell cycle distributions in synchrony experiments. Cell Cycle 6(4):478–488PubMedCrossRefGoogle Scholar
  32. 32.
    Futcher B (2000) Microarrays and cell cycle transcription in yeast. Curr Opin Cell Biol 12(6):710–715PubMedCrossRefGoogle Scholar
  33. 33.
    Simmons Kovacs LA, Orlando DA, Haase SB (2008) Transcription networks and cyclin/CDKs: the yin and yang of cell cycle oscillators. Cell Cycle 7(17):2626–2629PubMedCrossRefGoogle Scholar
  34. 34.
    Barberis M, Spiesser TW, Klipp E (2010) Replication origins and timing of temporal replication in budding yeast: how to solve the conundrum? Curr Genomics 11(3):199–211PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Dahmann C, Diffley JF, Nasmyth KA (1995) S-phase-promoting cyclin-dependent kinases prevent re-replication by inhibiting the transition of replication origins to a pre-replicative state. Curr Biol 5(11):1257–1269PubMedCrossRefGoogle Scholar
  36. 36.
    Sidorova JM, Mikesell GE, Breeden LL (1995) Cell cycle-regulated phosphorylation of Swi6 controls its nuclear localization. Mol Biol Cell 6(12):1641–1658PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Abdulrehman D, Monteiro PT, Teixeira MC, Mira NP, Lourenco AB, dos Santos SC, Cabrito TR, Francisco AP, Madeira SC, Aires RS, Oliveira AL, Sa-Correia I, Freitas AT (2011) YEASTRACT: providing a programmatic access to curated transcriptional regulatory associations in Saccharomyces cerevisiae through a web services interface. Nucleic Acids Res 39(Database issue):D136–D140PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Monteiro PT, Mendes ND, Teixeira MC, d’Orey S, Tenreiro S, Mira NP, Pais H, Francisco AP, Carvalho AM, Lourenco AB, Sa-Correia I, Oliveira AL, Freitas AT (2008) YEASTRACT-DISCOVERER: new tools to improve the analysis of transcriptional regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Res 36(Database issue): D132–D136PubMedCentralPubMedGoogle Scholar
  39. 39.
    Teixeira MC, Monteiro P, Jain P, Tenreiro S, Fernandes AR, Mira NP, Alenquer M, Freitas AT, Oliveira AL, Sa-Correia I (2006) The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Res 34(Database issue):D446–D451PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Cross FR, Tinkelenberg AH (1991) A potential positive feedback loop controlling CLN1 and CLN2 gene expression at the start of the yeast cell cycle. Cell 65(5):875–883PubMedCrossRefGoogle Scholar
  41. 41.
    Dirick L, Nasmyth K (1991) Positive feedback in the activation of G1 cyclins in yeast. Nature 351(6329):754–757PubMedCrossRefGoogle Scholar
  42. 42.
    Marini NJ, Reed SI (1992) Direct induction of G1-specific transcripts following reactivation of the Cdc28 kinase in the absence of de novo protein synthesis. Genes Dev 6(4):557–567PubMedCrossRefGoogle Scholar
  43. 43.
    Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, Danford TW, Hannett NM, Tagne JB, Reynolds DB, Yoo J, Jennings EG, Zeitlinger J, Pokholok DK, Kellis M, Rolfe PA, Takusagawa KT, Lander ES, Gifford DK, Fraenkel E, Young RA (2004) Transcriptional regulatory code of a eukaryotic genome. Nature 431(7004):99–104PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E, Gifford DK, Young RA (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298(5594):799–804PubMedCrossRefGoogle Scholar
  45. 45.
    Di Talia S, Wang H, Skotheim JM, Rosebrock AP, Futcher B, Cross FR (2009) Daughter-specific transcription factors regulate cell size control in budding yeast. PLoS Biol 7(10): e1000221PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Dirick L, Moll T, Auer H, Nasmyth K (1992) A central role for SWI6 in modulating cell cycle Start-specific transcription in yeast. Nature 357(6378):508–513PubMedCrossRefGoogle Scholar
  47. 47.
    Andrews BJ, Herskowitz I (1989) The yeast SWI4 protein contains a motif present in developmental regulators and is part of a complex involved in cell-cycle-dependent transcription. Nature 342(6251):830–833PubMedCrossRefGoogle Scholar
  48. 48.
    Koch C, Moll T, Neuberg M, Ahorn H, Nasmyth K (1993) A role for the transcription factors Mbp1 and Swi4 in progression from G1 to S phase. Science 261(5128):1551–1557PubMedCrossRefGoogle Scholar
  49. 49.
    Costanzo M, Nishikawa JL, Tang X, Millman JS, Schub O, Breitkreuz K, Dewar D, Rupes I, Andrews B, Tyers M (2004) CDK activity antagonizes Whi5, an inhibitor of G1/S transcription in yeast. Cell 117(7):899–913PubMedCrossRefGoogle Scholar
  50. 50.
    de Bruin RA, McDonald WH, Kalashnikova TI, Yates J 3rd, Wittenberg C (2004) Cln3 activates G1-specific transcription via phosphorylation of the SBF bound repressor Whi5. Cell 117(7):887–898PubMedCrossRefGoogle Scholar
  51. 51.
    Pramila T, Miles S, GuhaThakurta D, Jemiolo D, Breeden LL (2002) Conserved homeodomain proteins interact with MADS box protein Mcm1 to restrict ECB-dependent transcription to the M/G1 phase of the cell cycle. Genes Dev 16(23):3034–3045PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Amon A, Tyers M, Futcher B, Nasmyth K (1993) Mechanisms that help the yeast cell cycle clock tick: G2 cyclins transcriptionally activate G2 cyclins and repress G1 cyclins. Cell 74(6):993–1007PubMedCrossRefGoogle Scholar
  53. 53.
    de Bruin RA, Kalashnikova TI, Chahwan C, McDonald WH, Wohlschlegel J, Yates J 3rd, Russell P, Wittenberg C (2006) Constraining G1-specific transcription to late G1 phase: the MBF-associated corepressor Nrm1 acts via negative feedback. Mol Cell 23(4):483–496PubMedCrossRefGoogle Scholar
  54. 54.
    Iyer VR, Horak CE, Scafe CS, Botstein D, Snyder M, Brown PO (2001) Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409(6819): 533–538PubMedCrossRefGoogle Scholar
  55. 55.
    Kumar R, Reynolds DM, Shevchenko A, Shevchenko A, Goldstone SD, Dalton S (2000) Forkhead transcription factors, Fkh1p and Fkh2p, collaborate with Mcm1p to control transcription required for M-phase. Curr Biol 10(15):896–906PubMedCrossRefGoogle Scholar
  56. 56.
    Pic A, Lim FL, Ross SJ, Veal EA, Johnson AL, Sultan MR, West AG, Johnston LH, Sharrocks AD, Morgan BA (2000) The forkhead protein Fkh2 is a component of the yeast cell cycle transcription factor SFF. EMBO J 19(14): 3750–3761PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Maher M, Cong F, Kindelberger D, Nasmyth K, Dalton S (1995) Cell cycle-regulated transcription of the CLB2 gene is dependent on Mcm1 and a ternary complex factor. Mol Cell Biol 15(6):3129–3137PubMedCentralPubMedGoogle Scholar
  58. 58.
    Lim FL, Hayes A, West AG, Pic-Taylor A, Darieva Z, Morgan BA, Oliver SG, Sharrocks AD (2003) Mcm1p-induced DNA bending regulates the formation of ternary transcription factor complexes. Mol Cell Biol 23(2): 450–461PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Koranda M, Schleiffer A, Endler L, Ammerer G (2000) Forkhead-like transcription factors recruit Ndd1 to the chromatin of G2/M-specific promoters. Nature 406(6791):94–98PubMedCrossRefGoogle Scholar
  60. 60.
    Althoefer H, Schleiffer A, Wassmann K, Nordheim A, Ammerer G (1995) Mcm1 is required to coordinate G2-specific transcription in Saccharomyces cerevisiae. Mol Cell Biol 15(11):5917–5928PubMedCentralPubMedGoogle Scholar
  61. 61.
    Darieva Z, Pic-Taylor A, Boros J, Spanos A, Geymonat M, Reece RJ, Sedgwick SG, Sharrocks AD, Morgan BA (2003) Cell cycle-regulated transcription through the FHA domain of Fkh2p and the coactivator Ndd1p. Curr Biol 13(19):1740–1745PubMedCrossRefGoogle Scholar
  62. 62.
    Pic-Taylor A, Darieva Z, Morgan BA, Sharrocks AD (2004) Regulation of cell cycle-specific gene expression through cyclin-dependent kinase-mediated phosphorylation of the forkhead transcription factor Fkh2p. Mol Cell Biol 24(22):10036–10046PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Reynolds D, Shi BJ, McLean C, Katsis F, Kemp B, Dalton S (2003) Recruitment of Thr 319-phosphorylated Ndd1p to the FHA domain of Fkh2p requires Clb kinase activity: a mechanism for CLB cluster gene activation. Genes Dev 17(14):1789–1802PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    O'Conallain C, Doolin MT, Taggart C, Thornton F, Butler G (1999) Regulated nuclear localisation of the yeast transcription factor Ace2p controls expression of chitinase (CTS1) in Saccharomyces cerevisiae. Mol Gen Genet 262(2):275–282PubMedCrossRefGoogle Scholar
  65. 65.
    Moll T, Tebb G, Surana U, Robitsch H, Nasmyth K (1991) The role of phosphorylation and the CDC28 protein kinase in cell cycle-regulated nuclear import of the S. cerevisiae transcription factor SWI5. Cell 66(4):743–758PubMedCrossRefGoogle Scholar
  66. 66.
    Haase SB, Reed SI (1999) Evidence that a free-running oscillator drives G1 events in the budding yeast cell cycle. Nature 401(6751): 394–397PubMedGoogle Scholar
  67. 67.
    (2005) Northern blotting: transfer of denatured RNA to membranes. Nat Methods 2(12):997–998Google Scholar
  68. 68.
    Koch C, Nasmyth K (1994) Cell cycle regulated transcription in yeast. Curr Opin Cell Biol 6(3):451–459PubMedCrossRefGoogle Scholar
  69. 69.
    Johnston LH (1990) Periodic events in the cell cycle. Curr Opin Cell Biol 2(2):274–279PubMedCrossRefGoogle Scholar
  70. 70.
    Deckard A, Anafi RC, Hogenesch JB, Haase SB, Harer J (2013) Design and analysis of large-scale biological rhythym studies: a comparison of algorithms for detecting periodic signals in biological data. Bioinformatics 29(24):3174–3180PubMedCrossRefGoogle Scholar
  71. 71.
    Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I, Zeitlinger J, Schreiber J, Hannett N, Kanin E, Volkert TL, Wilson CJ, Bell SP, Young RA (2000) Genome-wide location and function of DNA binding proteins. Science 290(5500):2306–2309PubMedCrossRefGoogle Scholar
  73. 73.
    Horak CE, Luscombe NM, Qian J, Bertone P, Piccirrillo S, Gerstein M, Snyder M (2002) Complex transcriptional circuitry at the G1/S transition in Saccharomyces cerevisiae. Genes Dev 16(23):3017–3033PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Ogas J, Andrews BJ, Herskowitz I (1991) Transcriptional activation of CLN1, CLN2, and a putative new G1 cyclin (HCS26) by SWI4, a positive regulator of G1-specific transcription. Cell 66(5):1015–1026PubMedCrossRefGoogle Scholar
  75. 75.
    Zhu G, Spellman PT, Volpe T, Brown PO, Botstein D, Davis TN, Futcher B (2000) Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature 406(6791): 90–94PubMedCrossRefGoogle Scholar
  76. 76.
    Bitter GA (1998) Function of hybrid human-yeast cyclin-dependent kinases in Saccharomyces cerevisiae. Mol Gen Genet 260(1):120–130PubMedCrossRefGoogle Scholar
  77. 77.
    Gao CY, Pinkham JL (2000) Tightly regulated, beta-estradiol dose-dependent expression system for yeast. Biotechniques 29(6):1226–1231PubMedGoogle Scholar
  78. 78.
    Louvion J-F, Havaux-Copf B, Picard D (1993) Fusion of GAL4-VP16 to a steroid-binding domain provides a tool for gratuitous induction of galactose-responsive genes in yeast. Gene 131(1):129–134PubMedCrossRefGoogle Scholar
  79. 79.
    McIsaac RS, Silverman SJ, McClean MN, Gibney PA, Macinskas J, Hickman MJ, Petti AA, Botstein D (2011) Fast-acting and nearly gratuitous induction of gene expression and protein depletion in Saccharomyces cerevisiae. Mol Biol Cell 22(22):4447–4459PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Huebert DJ, Kuan PF, Keles S, Gasch AP (2012) Dynamic changes in nucleosome occupancy are not predictive of gene expression dynamics but are linked to transcription and chromatin regulators. Mol Cell Biol 32(9): 1645–1653PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Ozsolak F, Platt AR, Jones DR, Reifenberger JG, Sass LE, McInerney P, Thompson JF, Bowers J, Jarosz M, Milos PM (2009) Direct RNA sequencing. Nature 461(7265):814–818PubMedCrossRefGoogle Scholar
  82. 82.
    Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, Dewinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S (2009) Real-time DNA sequencing from single polymerase molecules. Science 323(5910):133–138PubMedCrossRefGoogle Scholar
  83. 83.
    Cherf GM, Lieberman KR, Rashid H, Lam CE, Karplus K, Akeson M (2012) Automated forward and reverse ratcheting of DNA in a nanopore at 5-A precision. Nat Biotech 30(4): 344–348CrossRefGoogle Scholar
  84. 84.
    Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, Gu Y (2012) A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13:341PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G, Wang Z, Rasko DA, McCombie WR, Jarvis ED, Adam MP (2012) Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol 30(7):693–700PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Au KF, Underwood JG, Lee L, Wong WH (2012) Improving PacBio long read accuracy by short read alignment. PLoS One 7(10): e46679PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    O’Connor C (2008) Fluorescence in situ hybridization (FISH). Nat Educ 1(1):171Google Scholar
  88. 88.
    Cai L (2013) Turning single cells into microarrays by super-resolution barcoding. Brief Funct Genomics 12(2):75–80PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Lubeck E, Cai L (2012) Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nat Meth 9(7):743–748CrossRefGoogle Scholar
  90. 90.
    Querido E, Chartrand P (2008) Using fluorescent proteins to study mRNA trafficking in living cells. Methods Cell Biol 85:273–292PubMedCrossRefGoogle Scholar
  91. 91.
    Witherell GW, Gott JM, Uhlenbeck OC (1991) Specific interaction between RNA phage coat proteins and RNA. Prog Nucleic Acid Res Mol Biol 40:185–220PubMedCrossRefGoogle Scholar
  92. 92.
    Stockley PG, Stonehouse NJ, Murray JB, Goodman ST, Talbot SJ, Adams CJ, Liljas L, Valegard K (1995) Probing sequence-specific RNA recognition by the bacteriophage MS2 coat protein. Nucleic Acids Res 23(13): 2512–2518PubMedCentralPubMedCrossRefGoogle Scholar
  93. 93.
    Bertrand E, Chartrand P, Schaefer M, Shenoy SM, Singer RH, Long RM (1998) Localization of ASH1 mRNA particles in living yeast. Mol Cell 2(4):437–445PubMedCrossRefGoogle Scholar
  94. 94.
    Hocine S, Raymond P, Zenklusen D, Chao JA, Singer RH (2013) Single-molecule analysis of gene expression using two-color RNA labeling in live yeast. Nat Meth 10(2):119–121CrossRefGoogle Scholar
  95. 95.
    Tyagi S (2009) Imaging intracellular RNA distribution and dynamics in living cells. Nat Meth 6(5):331–338CrossRefGoogle Scholar
  96. 96.
    Golding I, Cox EC (2004) RNA dynamics in live Escherichia coli cells. Proc Natl Acad Sci U S A 101(31):11310–11315PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    Golding I, Paulsson J, Zawilski SM, Cox EC (2005) Real-time kinetics of gene activity in individual bacteria. Cell 123(6):1025–1036PubMedCrossRefGoogle Scholar
  98. 98.
    Ubersax JA, Woodbury EL, Quang PN, Paraz M, Blethrow JD, Shah K, Shokat KM, Morgan DO (2003) Targets of the cyclin-dependent kinase Cdk1. Nature 425(6960):859–864PubMedCrossRefGoogle Scholar
  99. 99.
    Ostapenko D, Burton JL, Solomon MJ (2012) Identification of anaphase promoting complex substrates in S. cerevisiae. PLoS One 7(9):e45895PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Sara L. Bristow
    • 1
    • 2
  • Adam R. Leman
    • 1
    • 2
  • Steven B. Haase
    • 1
    • 2
  1. 1.Department of BiologyDuke UniversityDurhamUSA
  2. 2.Duke Center for Systems BiologyDuke UniversityDurhamUSA

Personalised recommendations