Advertisement

Bioinformatics Challenges in Genome-Wide Association Studies (GWAS)

  • Rishika De
  • William S. Bush
  • Jason H. MooreEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1168)

Abstract

Genome-wide association studies (GWAS) are a powerful tool for investigators to examine the human genome to detect genetic risk factors, reveal the genetic architecture of diseases and open up new opportunities for treatment and prevention. However, despite its successes, GWAS have not been able to identify genetic loci that are effective classifiers of disease, limiting their value for genetic testing. This chapter highlights the challenges that lie ahead for GWAS in better identifying disease risk predictors, and how we may address them. In this regard, we review basic concepts regarding GWAS, the technologies used for capturing genetic variation, the missing heritability problem, the need for efficient study design especially for replication efforts, reducing the bias introduced into a dataset, and how to utilize new resources available, such as electronic medical records. We also look to what lies ahead for the field, and the approaches that can be taken to realize the full potential of GWAS.

Key words

Data imputation Epistasis Electronic medical records Filtering Gene–gene interactions GWAS Meta-analysis Missing heritability Replication 

Abbreviations

EMR

Electronic medical record

GWAS

Genome-wide association study/studies

LD

Linkage disequilibrium

MAF

Minor allele frequency

SNP

Single nucleotide polymorphism

References

  1. 1.
    Hirschhorn JN, Daly MJ (2005) Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 6:95–108PubMedCrossRefGoogle Scholar
  2. 2.
    Hindorff L, MacArthur J, Morales J et al. A catalog of published genome-wide association studies. www.genome.gov/gwastudies/
  3. 3.
    Reich DE, Lander ES (2001) On the allelic spectrum of human disease. Trends Genet 17:502–510PubMedCrossRefGoogle Scholar
  4. 4.
    Edwards AO, Ritter R, Abel KJ et al (2005) Complement factor H polymorphism and age-related macular degeneration. Science 308:421–424PubMedCrossRefGoogle Scholar
  5. 5.
    Haines JL, Hauser MA, Schmidt S et al (2005) Complement factor H variant increases the risk of age-related macular degeneration. Science 308:419–421PubMedCrossRefGoogle Scholar
  6. 6.
    Klein RJ, Zeiss C, Chew EY et al (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308:385–389PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Maller J, George S, Purcell S et al (2006) Common variation in three genes, including a noncoding variant in CFH, strongly influences risk of age-related macular degeneration. Nat Genet 38:1055–1059PubMedCrossRefGoogle Scholar
  8. 8.
    Williams SM, Canter JA, Crawford DC et al (2007) Problems with genome-wide association studies. Science 316:1841–1842Google Scholar
  9. 9.
    Jakobsdottir J, Gorin MB, Conley YP et al (2009) Interpretation of genetic association studies: markers with replicated highly significant odds ratios may be poor classifiers. PLoS Genet 5:e1000337PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Easton DF, Pooley KA, Dunning AM et al (2009) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447:1087–1093CrossRefGoogle Scholar
  11. 11.
    Ahmed S, Thomas G, Ghoussaini M et al (2009) Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nat Genet 41:585–590PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Ragoussis J (2009) Genotyping technologies for genetic research. Annu Rev Genomics Hum Genet 10:117–133PubMedCrossRefGoogle Scholar
  13. 13.
    Denny JC (2012) Mining electronic health records in the genomics era. PLoS Comput Biol 8:e1002823PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    The International HapMap Consortium (2005) A haplotype map of the human genome. Nature 437:1299–1320PubMedCentralCrossRefGoogle Scholar
  15. 15.
    The 1000 Genomes Project Consortium, Abecasis GR, Altshuler D, Auton A et al (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061–1073PubMedCrossRefGoogle Scholar
  16. 16.
    Sherry ST, Ward MH, Kholodov M et al (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29:308–311PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Griffith OL, Montgomery SB, Bernier B et al (2008) ORegAnno: an open-access community-driven resource for regulatory annotation. Nucleic Acids Res 36:D107–D113PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    The Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678PubMedCentralCrossRefGoogle Scholar
  19. 19.
    Scuteri A, Sanna S, Chen W-M et al (2007) Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet 3:e115PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Frayling TM, Timpson NJ, Weedon MN et al (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316:889–894PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Saxena R, Voight BF, Lyssenko V et al (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316:1331–1336PubMedCrossRefGoogle Scholar
  22. 22.
    Corder EH, Saunders AM, Strittmatter WJ et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923PubMedCrossRefGoogle Scholar
  23. 23.
    Bansal V, Libiger O, Torkamani A et al (2010) Statistical analysis strategies for association studies involving rare variants. Nat Rev Genet 11:773–785PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Gibson G (2012) Rare and common variants: twenty arguments. Nat Rev Genet 13:135–145PubMedCrossRefGoogle Scholar
  25. 25.
    Devlin B, Risch N (1995) A comparison of linkage disequilibrium measures for fine-scale mapping. Genomics 29:311–322PubMedCrossRefGoogle Scholar
  26. 26.
    Li M, Li C, Guan W (2008) Evaluation of coverage variation of SNP chips for genome-wide association studies. Eur J Hum Genet 16:635–643PubMedCrossRefGoogle Scholar
  27. 27.
    Distefano JK, Taverna DM (2011) Technological issues and experimental design of gene association studies. Methods Mol Biol 700:3–16PubMedCrossRefGoogle Scholar
  28. 28.
    Lewis CM, Knight J (2012) Introduction to genetic association studies. Cold Spring Harb Protoc 3:297–306Google Scholar
  29. 29.
    Lewis CM (2002) Genetic association studies: design, analysis and interpretation. Brief Bioinform 3:146–153PubMedCrossRefGoogle Scholar
  30. 30.
    Teslovich TM, Musunuru K, Smith AV et al (2010) Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466:707–713PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Bush WS, Moore JH (2012) Genome-wide association studies. PLoS Comput Biol 8:e1002822PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Habek M, Brinar VV, Borovečki F (2010) Genes associated with multiple sclerosis: 15 and counting. Expert Rev Mol Diagn 10:857–861PubMedCrossRefGoogle Scholar
  33. 33.
    Polman CH, Reingold SC, Edan G et al (2005) Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol 58:840–846PubMedCrossRefGoogle Scholar
  34. 34.
    Kohane IS (2011) Using electronic health records to drive discovery in disease genomics. Nat Rev Genet 12:417–428PubMedCrossRefGoogle Scholar
  35. 35.
    Sager N, Lyman M, Bucknall C et al (1994) Natural language processing and the representation of clinical data. J Am Med Inform Assoc 1:142–160PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Friedman C, Hripcsak G, Shablinsky I (1998) An evaluation of natural language processing methodologies. Proc AMIA Symp 855–859Google Scholar
  37. 37.
    Haug PJ, Ranum DL, Frederick PR (1990) Computerized extraction of coded findings from free-text radiologic reports. Work in progress. Radiology 174:543–548PubMedGoogle Scholar
  38. 38.
    Kullo IJ, Fan J, Pathak J et al (2010) Leveraging informatics for genetic studies: use of the electronic medical record to enable a genome-wide association study of peripheral arterial disease. J Am Med Inform Assoc 17:568–574PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Ding K, de Andrade M, Manolio TA et al (2013) Genetic variants that confer resistance to malaria are associated with red blood cell traits in African-Americans: an electronic medical record-based genome-wide association study. G3 (Bethesda) 3:1061–1068PubMedCentralCrossRefGoogle Scholar
  40. 40.
    Wilke RA, Berg RL, Linneman JG et al (2010) Quantification of the clinical modifiers impacting high-density lipoprotein cholesterol in the community: Personalized Medicine Research Project. Prev Cardiol 13:63–68PubMedCrossRefGoogle Scholar
  41. 41.
    McCarty CA, Wilke RA (2010) Biobanking and pharmacogenomics. Pharmacogenomics 11:637–641PubMedCrossRefGoogle Scholar
  42. 42.
    Ritchie MD, Denny JC, Crawford DC et al (2010) Robust replication of genotype–phenotype associations across multiple diseases in an electronic medical record. Am J Hum Genet 86:560–572PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Dubé JB, Hegele RA (2013) Genetics 100 for cardiologists: basics of genome-wide association studies. Can J Cardiol 29:10–17PubMedCrossRefGoogle Scholar
  44. 44.
    Price AL, Zaitlen NA, Reich D et al (2010) New approaches to population stratification in genome-wide association studies. Nat Rev Genet 11:459–463PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedCentralPubMedGoogle Scholar
  46. 46.
    Price AL, Patterson NJ, Plenge RM et al (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909PubMedCrossRefGoogle Scholar
  47. 47.
    Sale M, Mychaleckyj JC, Chen W (2009) Planning and executing a genome wide association study (GWAS). Methods Mol Biol 590:403–418PubMedCrossRefGoogle Scholar
  48. 48.
    Eichler EE, Flint J, Gibson G et al (2010) Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 11:446–450PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Cordell HJ (2002) Epistasis: what it means, what it doesn’t mean, and statistical methods to detect it in humans. Hum Mol Genet 11:2463–2468PubMedCrossRefGoogle Scholar
  50. 50.
    Moore JH, Williams SM (2005) Traversing the conceptual divide between biological and statistical epistasis: systems biology and a more modern synthesis. Bioessays 27:637–646PubMedCrossRefGoogle Scholar
  51. 51.
    Manolio TA, Collins FS, Cox NJ et al (2009) Finding the missing heritability of complex diseases. Nature 461:747–753PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Moore JH, Asselbergs FW, Williams SM (2010) Bioinformatics challenges for genome-wide association studies. Bioinformatics 26:445–455PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Moore J, Ritchie M (2004) The challenges of whole-genome approaches to common disease. J Am Med Assoc 291:1642–1643CrossRefGoogle Scholar
  54. 54.
    Moore JH (2004) Computational analysis of gene–gene interactions using multifactor dimensionality reduction. Expert Rev Mol Diagn 4:795–803PubMedCrossRefGoogle Scholar
  55. 55.
    Bush WS, Dudek SM, Ritchie MD (2009) Biofilter: a knowledge-integration system for the multi-locus analysis of genome-wide association studies. Pac Symp Biocomput 368–379Google Scholar
  56. 56.
    Ritchie MD, Hahn LW, Roodi N et al (2001) Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 69:138–147PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Herold C, Steffens M, Brockschmidt FF et al (2009) INTERSNP: genome-wide interaction analysis guided by a priori information. Bioinformatics 25:3275–3281PubMedCrossRefGoogle Scholar
  58. 58.
    Hochberg Y, Benjamini Y (1990) More powerful procedures for multiple significance testing. Stat Med 9:811–818PubMedCrossRefGoogle Scholar
  59. 59.
    van den Oord EJ (2008) Controlling false discoveries in genetic studies. Am J Med Genet Part B Neuropsychiatr Genet 147B:637–644CrossRefGoogle Scholar
  60. 60.
    Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Browning BL (2008) PRESTO: rapid calculation of order statistic distributions and multiple-testing adjusted P-values via permutation for one and two-stage genetic association studies. BMC Bioinformatics 9:309PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Pahl R, Schäfer H (2010) PERMORY: an LD-exploiting permutation test algorithm for powerful genome-wide association testing. Bioinformatics 26:2093–2100PubMedCrossRefGoogle Scholar
  63. 63.
    Chanock SJ, Manolio T, Boehnke M et al (2007) Replicating genotype–phenotype associations. Nature 447:655–660PubMedCrossRefGoogle Scholar
  64. 64.
    Zollner S, Pritchard JK (2007) Overcoming the winner’s curse: estimating penetrance parameters from case-control data. Am J Hum Genet 80:605–615PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Huedo-Medina TB, Sánchez-Meca J, Marín-Martínez F et al (2006) Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol Methods 11:193–206PubMedCrossRefGoogle Scholar
  66. 66.
    Evangelou E, Ioannidis JP (2013) Meta-analysis methods for genome-wide association studies and beyond. Nat Rev Genet 14:379–389PubMedCrossRefGoogle Scholar
  67. 67.
    Li Y, Willer C, Sanna S et al (2009) Genotype imputation. Annu Rev Genomics Hum Genet 10:387–406PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Marchini J, Howie B (2010) Genotype imputation for genome-wide association studies. Nat Rev Genet 11:499–511PubMedCrossRefGoogle Scholar
  69. 69.
    Guan Y, Stephens M (2008) Practical issues in imputation-based association mapping. PLoS Genet 4:e1000279PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Howie BN, Donnelly P, Marchini J (2009) A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 5:e1000529PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Biernacka J, Tang R, Li J et al (2009) Assessment of genotype imputation methods. BMC Proc 3(Suppl 7):S5PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Browning BL, Browning SR (2009) A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet 84:210–223PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Barrett JC, Cardon LR (2006) Evaluating coverage of genome-wide association studies. Nat Genet 38:659–662PubMedCrossRefGoogle Scholar
  74. 74.
    Pe’er I, de Bakker PI, Maller J et al (2006) Evaluating and improving power in whole-genome association studies using fixed marker sets. Nat Genet 38:663–667PubMedCrossRefGoogle Scholar
  75. 75.
    Zeggini E, Ioannidis JP (2009) Meta-analysis in genome-wide association studies. Pharmacogenomics 10:191–201PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Rishika De
    • 1
  • William S. Bush
    • 2
  • Jason H. Moore
    • 1
    • 3
    Email author
  1. 1.Department of GeneticsGeisel School of Medicine, Dartmouth CollegeHanoverUSA
  2. 2.Department of Biomedical InformaticsCenter for Human Genetics Research, Vanderbilt University Medical SchoolNashvilleUSA
  3. 3.Department of GeneticsDartmouth-Hitchcock Medical Center, Geisel School of MedicineLebanonUSA

Personalised recommendations