Advertisement

Employing TMT Quantification in a Shotgun-MS Platform

  • Darragh P. O’Brien
  • John F. Timms
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1156)

Abstract

The blood serum proteome may be an ideal source of disease biomarkers, although its complexity necessitates novel strategies to enrich and quantify lower-abundance proteins with biomarker utility. Herein, serum samples from pre-diagnosis pancreatic cancer cases and controls were compared using a workflow of immunodepletion, multi-lectin fractionation, and peptide tandem mass tag (TMT) labeling. Samples were then subjected to SCX and high pH reversed-phase fractionation and analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS). The aim was the discovery of candidate serum biomarkers of pancreatic cancer, although the method is applicable to any comparative proteomic analysis of serum samples.

Key words

Proteomic profiling Serum Protein quantification LC-MS/MS Tandem mass tags (TMT) Mass spectrometry Pancreatic cancer 

Notes

Acknowledgement

This work was funded by CRUK Project Grant C12077/A12790 and was supported by the National Institute for Health Research University College London Hospitals Biomedical Research Centre.

References

  1. 1.
    Washburn MP, Wolters D, Yates JR 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247PubMedCrossRefGoogle Scholar
  2. 2.
    Kuhn K, Thompson A, Prinz T, Muller J, Baumann C, Schmidt G, Neumann T, Hamon C (2003) Isolation of N-terminal protein sequence tags from cyanogen bromide cleaved proteins as a novel approach to investigate hydrophobic proteins. J Proteome Res 2:598–609PubMedCrossRefGoogle Scholar
  3. 3.
    Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169PubMedCrossRefGoogle Scholar
  4. 4.
    Bantscheff M, Boesche M, Eberhard D, Matthieson T, Sweetman G, Kuster B (2008) Robust and sensitive iTRAQ quantification on an LTQ Orbitrap mass spectrometer. Mol Cell Proteomics 7:1702–1713PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Griffin TJ, Xie H, Bandhakavi S, Popko J, Mohan A, Carlis JV, Higgins L (2007) iTRAQ reagent-based quantitative proteomic analysis on a linear ion trap mass spectrometer. J Proteome Res 6:4200–4209PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Guo T, Gan CS, Zhang H, Zhu Y, Kon OL, Sze SK (2008) Hybridization of pulsed-Q dissociation and collision-activated dissociation in linear ion trap mass spectrometer for iTRAQ quantitation. J Proteome Res 7: 4831–4840PubMedCrossRefGoogle Scholar
  7. 7.
    Dayon L, Hainard A, Licker V, Turck N, Kuhn K, Hochstrasser DF, Burkhard PR, Sanchez JC (2008) Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric tags. Anal Chem 80: 2921–2931PubMedCrossRefGoogle Scholar
  8. 8.
    Sinclair J, Metodieva G, Dafou D, Gayther SA, Timms JF (2011) Profiling signatures of ovarian cancer tumour suppression using 2D-DIGE and 2D-LC-MS/MS with tandem mass tagging. J Proteomics 74:451–465PubMedCrossRefGoogle Scholar
  9. 9.
    Sinclair J, Timms JF (2011) Quantitative profiling of serum samples using TMT protein labelling, fractionation and LC-MS/MS. Methods 54:361–369PubMedCrossRefGoogle Scholar
  10. 10.
    Menon U, Kalsi J, Jacobs I (2012) The UKCTOCS experience-reasons for hope? Int J Gynecol Cancer 22(Suppl 1):S18–S20PubMedCrossRefGoogle Scholar
  11. 11.
    Ting L, Rad R, Gygi SP, Haas W (2011) MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics. Nat Methods 8:937–940PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Wenger CD, Lee MV, Hebert AS, McAlister GC, Phanstiel DH, Westphall MS, Coon JJ (2011) Gas-phase purification enables accurate, multiplexed proteome quantification with isobaric tagging. Nat Methods 8:933–935PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    van Ulsen P, Kuhn K, Prinz T, Legner H, Schmid P, Baumann C, Tommassen J (2009) Identification of proteins of Neisseria meningitidis induced under iron-limiting conditions using the isobaric tandem mass tag (TMT) labeling approach. Proteomics 9:1771–1781PubMedCrossRefGoogle Scholar
  14. 14.
    Stella R, Cifani P, Peggion C, Hansson K, Lazzari C, Bendz M, Levander F, Sorgato MC, Bertoli A, James P (2011) Relative quantification of membrane proteins in wild-type and prion protein (PrP)-knockout cerebellar granule neurons. J Proteome Res 11:523–536PubMedCrossRefGoogle Scholar
  15. 15.
    Byers HL, Campbell J, van Ulsen P, Tommassen J, Ward MA, Schulz-Knappe P, Prinz T, Kuhn K (2009) Candidate verification of iron-regulated Neisseria meningitidis proteins using isotopic versions of tandem mass tags (TMT) and single reaction monitoring. J Proteomics 73:231–239PubMedCrossRefGoogle Scholar
  16. 16.
    Viner RI, Zhang T, Second T, Zabrouskov V (2009) Quantification of post-translationally modified peptides of bovine alpha-crystallin using tandem mass tags and electron transfer dissociation. J Proteomics 72:874–885PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Cancer Proteomics LaboratoryEGA Institute for Women’s Health, University College LondonLondonUK

Personalised recommendations