Plant Isoprenoids pp 273-283

Part of the Methods in Molecular Biology book series (MIMB, volume 1153) | Cite as

Quantification of Plant Resistance to Isoprenoid Biosynthesis Inhibitors

  • Catalina Perelló
  • Manuel Rodríguez-Concepción
  • Pablo Pulido
Protocol

Abstract

Plants use two pathways for the production of the same universal isoprenoid precursors: the mevalonic acid (MVA) pathway and the methylerythritol 4-phosphate (MEP) pathway. Inhibitors of the MVA pathway prevent the activity of the shoot apical meristem and the development of true leaves in seedlings, whereas those inhibiting the MEP pathway show an additional bleaching phenotype. Here, we describe two methods to quantify plant resistance to inhibitors of the MVA pathway or the MEP pathway based on seedling establishment and photosynthetic pigment measurements. Although the methods are presented for Arabidopsis, they are valid for other plant species. These methods can be used as inexpensive and high-throughput alternatives to in vitro assays to estimate the activity of the corresponding target enzymes and to screen for mutants with altered levels or activities of these enzymes.

Key words

MEP pathway Inhibitors Mevinolin Clomazone Fosmidomycin Resistance Quantification 

References

  1. 1.
    Pulido P, Perello C, Rodriguez-Concepcion M (2012) New insights into plant isoprenoid metabolism. Mol Plant 5:964–967PubMedCrossRefGoogle Scholar
  2. 2.
    Vranova E, Coman D, Gruissem W (2013) Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol 64:665–700PubMedCrossRefGoogle Scholar
  3. 3.
    Campos N, Boronat A (1995) Targeting and topology in the membrane of plant 3-hydroxy-3-methylglutaryl coenzyme A reductase. Plant Cell 7:2163–2174PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Rodríguez-Concepción M (2006) Early steps in isoprenoid biosynthesis: multilevel regulation of the supply of common precursors in plant cells. Phytochem Rev 5:1–15CrossRefGoogle Scholar
  5. 5.
    Pulido P, Toledo-Ortiz G, Phillips MA, Wright LP, Rodriguez-Concepcion M (2013) Arabidopsis J-protein J20 delivers the first enzyme of the plastidial isoprenoid pathway to protein quality control. Plant Cell 25:4183–4194PubMedCrossRefGoogle Scholar
  6. 6.
    Rodríguez-Concepción M, Forés O, Martínez-García JF, González V, Phillips MA, Ferrer A, Boronat A (2004) Distinct light-mediated pathways regulate the biosynthesis and exchange of isoprenoid precursors during Arabidopsis seedling development. Plant Cell 16:144–156PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Carretero-Paulet L, Cairo A, Botella-Pavia P, Besumbes O, Campos N, Boronat A, Rodriguez-Concepcion M (2006) Enhanced flux through the methylerythritol 4-phosphate pathway in Arabidopsis plants overexpressing deoxyxylulose 5-phosphate reductoisomerase. Plant Mol Biol 62:683–695PubMedCrossRefGoogle Scholar
  8. 8.
    Alberts AW, Chen J, Kuron G, Hunt V, Huff J, Hoffman C, Rothrock J, Lopez M, Joshua H, Harris E, Patchett A, Monaghan R, Currie S, Stapley E, Albers-Schonberg G, Hensens O, Hirshfield J, Hoogsteen K, Liesch J, Springer J (1980) Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci U S A 77:3957–3961PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Istvan ES, Deisenhofer J (2001) Structural mechanism for statin inhibition of HMG-CoA reductase. Science 292:1160–1164PubMedCrossRefGoogle Scholar
  10. 10.
    Re EB, Jones D, Learned RM (1995) Co-expression of native and introduced genes reveals cryptic regulation of HMG CoA reductase expression in Arabidopsis. Plant J 7:771–784PubMedCrossRefGoogle Scholar
  11. 11.
    Kasahara H, Hanada A, Kuzuyama T, Takagi M, Kamiya Y, Yamaguchi S (2002) Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of gibberellins in Arabidopsis. J Biol Chem 277:45188–45194PubMedCrossRefGoogle Scholar
  12. 12.
    Zeidler J, Schwender J, Mueller C, Lichtenthaler HK (2000) The non-mevalonate isoprenoid biosynthesis of plants as a test system for drugs against malaria and pathogenic bacteria. Biochem Soc Trans 28:796–798PubMedCrossRefGoogle Scholar
  13. 13.
    Matsue Y, Mizuno H, Tomita T, Asami T, Nishiyama M, Kuzuyama T (2010) The herbicide ketoclomazone inhibits 1-deoxy-d-xylulose 5-phosphate synthase in the 2-C-methyl-d-erythritol 4-phosphate pathway and shows antibacterial activity against Haemophilus influenzae. J Antibiot (Tokyo) 63:583–588CrossRefGoogle Scholar
  14. 14.
    Kuzuyama T, Shimizu T, Takahashi S, Seto H (1998) Fosmidomycin, a specific inhibitor of 1-deoxy-d-xylulose 5-phosphate reductoisomerase in the nonmevalonate pathway for terpenoid biosynthesis. Tetrahedron Lett 39:7913–7916CrossRefGoogle Scholar
  15. 15.
    Steinbacher S, Kaiser J, Eisenreich W, Huber R, Bacher A, Rohdich F (2003) Structural basis of fosmidomycin action revealed by the complex with 2-C-methyl-d-erythritol 4-phosphate synthase (IspC). Implications for the catalytic mechanism and anti-malaria drug development. J Biol Chem 278:18401–18407PubMedCrossRefGoogle Scholar
  16. 16.
    Flores-Pérez U, Sauret-Güeto S, Gas E, Jarvis P, Rodríguez-Concepción M (2008) A mutant impaired in the production of plastome-encoded proteins uncovers a mechanism for the homeostasis of isoprenoid biosynthetic enzymes in Arabidopsis plastids. Plant Cell 20:1303–1315PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Laule O, Furholz A, Chang HS, Zhu T, Wang X, Heifetz PB, Gruissem W, Lange M (2003) Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci U S A 100:6866–6871PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Crowell DN, Packard CE, Pierson CA, Giner JL, Downes BP, Chary SN (2003) Identification of an allele of CLA1 associated with variegation in Arabidopsis thaliana. Physiol Plant 118:29–37PubMedCrossRefGoogle Scholar
  19. 19.
    Sauret-Güeto S, Botella-Pavia P, Flores-Perez U, Martinez-Garcia JF, San Roman C, Leon P, Boronat A, Rodriguez-Concepcion M (2006) Plastid cues posttranscriptionally regulate the accumulation of key enzymes of the methylerythritol phosphate pathway in Arabidopsis. Plant Physiol 141:75–84PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Kobayashi K, Suzuki M, Tang J, Nagata N, Ohyama K, Seki H, Kiuchi R, Kaneko Y, Nakazawa M, Matsui M, Matsumoto S, Yoshida S, Muranaka T (2007) Lovastatin insensitive 1, a Novel pentatricopeptide repeat protein, is a potential regulatory factor of isoprenoid biosynthesis in Arabidopsis. Plant Cell Physiol 48:322–331PubMedCrossRefGoogle Scholar
  21. 21.
    Flores-Perez U, Perez-Gil J, Closa M, Wright LP, Botella-Pavia P, Phillips MA, Ferrer A, Gershenzon J, Rodriguez-Concepcion M (2010) Pleiotropic regulatory locus 1 (PRL1) integrates the regulation of sugar responses with isoprenoid metabolism in Arabidopsis. Mol Plant 3:101–112PubMedCrossRefGoogle Scholar
  22. 22.
    Leivar P, Antolin-Llovera M, Ferrero S, Closa M, Arro M, Ferrer A, Boronat A, Campos N (2011) Multilevel control of Arabidopsis 3-hydroxy-3-methylglutaryl coenzyme A reductase by protein phosphatase 2A. Plant Cell 23:1494–1511PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Rodríguez-Concepción M, Boronat A (2002) Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 130:1079–1089PubMedCrossRefGoogle Scholar
  24. 24.
    Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:351–382Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Catalina Perelló
    • 1
  • Manuel Rodríguez-Concepción
    • 1
  • Pablo Pulido
    • 1
  1. 1.Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UBBarcelonaSpain

Personalised recommendations