Advertisement

Ocular Toxicity

  • Chantra Eskes
  • Erwin van Vliet
  • Michael Schäffer
  • Valérie ZuangEmail author
Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

The assessment of ocular toxicity (i.e., eye irritation and serious eye damage) is important to ensure the safety of products and their components used in our daily life. In several EU legislations related to chemicals and products, the generation of information on eye irritation and serious eye damage represents a standard requirement.

The traditional eye irritation test, also known as the Draize eye test, is performed on albino rabbits. Ethical and scientific considerations as well as legal requirements in EU legislations have triggered the development and validation of alternative methods to the Draize test. Since no in vitro test taken individually can nowadays fully replace the Draize eye test, testing schemes combining strengths of particular in vitro assays were proposed. The conceptual framework of testing strategies based on a Bottom-Up or Top-Down approach is described in this chapter. In addition, a summary of the most promising in vitro test methods as well as their validation and regulatory acceptance status is given. Finally some strategic proposals on the way forward in this area are made.

Key words

Ocular toxicity Eye irritation Serious eye damage Alternative methods In vitro tests Testing strategies Draize test Classification and labelling Chemicals Bottom-up approach Top-down approach 

References

  1. 1.
    Balls M, Botham PA, Bruner LH, Spielmann H (1995) The EC/HO international validation study on alternatives to the Draize eye irritation test. Toxicol In Vitro 9:871–929PubMedCrossRefGoogle Scholar
  2. 2.
    Gettings SD, Teal JJ, Bagley DM, Demetrulias JL, DiPasquale LC, Hintze KL, Rozen MG, Weise SL, Chudkowski M, Marenus KD, Pape WJW, Roddy M, Schnetzinger R, Silber PM, Glaza SM, Kurtz PJ (1991) The CTFA evaluation of alternatives program: an evaluation of in vitro alternatives to the Draize primary eye irritation test (phase 1) hydro-alcoholic formulations; (part 2) data analysis and biological significance. In Vitro Toxicol 4:247–288Google Scholar
  3. 3.
    Gettings SD, Bagley DM, Chudlowski M, Demetrulias JL, Dipasquale LC, Galli CL, Gay R, Hintze KL, Janus J, Marenus KD, Muscatiello MJ, Pape WJW, Renskers KJ, Roddy MT, Schnetzinger R (1992) Development of potential alternatives to the Draize eye test. The CTFA evaluation of alternatives program (Phase II). Review of materials and methods. ATLA 20:164–171Google Scholar
  4. 4.
    Gettings SD, Dipasquale LC, Bagley DM, Casterton PL, Chudkowski M, Curren RD (1994) The CTFA evaluation of alternatives program: an evaluation of in vitro alternatives to the Draize primary eye irritation test (phase II). Oil/water emulsions. Food Chem Toxicol 32:943–976PubMedCrossRefGoogle Scholar
  5. 5.
    Gettings SD, Lordo RA, Hintze KL, Bagley DM, Casterton PL, Chudkowski M, Curren RD, Demetrulias JL, DiPasquale LC, Earl LK, Feder PI, Galli CL, Glaza SM, Gordon VC, Janus J, Kurtz PJ, Marenus KD, Moral J, Pape WJW, Renskers KJ, Rheins LA, Roddy MT, Rozen MG, Tedeschi JP, Zyracki J (1996) The CTFA evaluation of alternatives program: an evaluation of in vitro alternatives to the Draize primary eye irritation test (phase III). Surfactant-based formulations. Food Chem Toxicol 34:79–117PubMedCrossRefGoogle Scholar
  6. 6.
    Brantom PG, Bruner LH, Chamberlain M, Desilva O, Dupuis J, Earl LK, Lovell DP, Pape WJW, Uttley M, Bagley DM, Baker FW, Brachter M, Courtellemont P, Declercq L, Freeman S, Steiling W, Walker AP, Carr GJ, Dami N, Thomas G, Harbell J, Jones PA, Pfannenbecker U, Southee JA, Tcheng M, Argembeaux H, Castelli D, Clothier R, Esdaile DJ, Itigaki H, Jung K, Kasai Y, Kojima H, Kristen U, Larnicol M, Lewis RW, Marenus K, Moreno O, Peterson A, Rasmussen ES, Robles C, Stern M (1997) A summary report of the COLIPA international validation study on alternatives to the Draize rabbit eye irritation test. Toxicol In Vitro 11:141–179PubMedCrossRefGoogle Scholar
  7. 7.
    Spielmann H, Kalweit S, Liebsch M, Wirnserberger T, Gerner I, Bertram-Neis E, Krauser K, Kreiling R, Miltenburger HG, Pape W, Steiling W (1993) Validation study of alternatives to the Draize eye irritation test in Germany: cytotoxicity testing and HET-CAM test with 136 industrial chemicals. Toxicol In Vitro 7:505–510PubMedCrossRefGoogle Scholar
  8. 8.
    Spielmann H, Liebsch M, Kalweit S, Moldenhauer F, Wirnsberger T, Holzhuetter HG, Schneider B, Glaser S, Gerner I, Pape WJW, Kreiling R, Krauser K, Miltenburger HG, Steiling W, Luepke NP, Mueller N, Kreuzer H, Muermann P, Spengler J, Betram-Neis E, Siegemund B, Wiebel FJ (1996) Results of a validation study in Germany on two in vitro alternatives to the Draize eye irritation test, the HET-CAM test and the 3T3 NRU cytotoxicity test. ATLA 24:741–858Google Scholar
  9. 9.
    Bradlaw J, Gupta K, Green S, Hill R, Wilcox N (1997) Practical application of non-whole animal alternatives: summary IRAG workshop on eye irritation. Food Chem Toxicol 35:175–178PubMedCrossRefGoogle Scholar
  10. 10.
    Ohno Y, Kaneko T, Inoue T, Morikawa Y, Yoshida T, Fuji A, Masuda M, Ohno T, Hayashi M, Momma J, Uchiyama T, Chiba K, Ikeda N, Imanashi Y, Itakagaki H (1999) Interlaboratory validation of the in vitro eye irritation tests for cosmetic ingredients. (1) Overview of the validation study and Draize scores for the evaluation of the tests. Toxicol In Vitro 13:73–98PubMedCrossRefGoogle Scholar
  11. 11.
    Draize JH, Woodard G, Calvery HO (1944) Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J Pharmacol Exp Ther 82:377–390Google Scholar
  12. 12.
    Balls M, Berg N, Bruner LH, Curren R, deSilva O, Earl LK, Esdaile DJ, Fentem JH, Liebsch M, Ohno Y, Prinsen MK, Spielmann H, Worth AP (1999) Eye irritation testing: the way forward. The report and recommendations of ECVAM workshop 34. ATLA 27:53–77Google Scholar
  13. 13.
    Eskes C., Bessou S, Bruner L, Curren R, Harbell J, Jones P., Kreiling R, Liebsch M, McNamee P, Pape W, Prinsen M, Seidle T, Vanparys P, Worth A, Zuang V (2005). Subchapter 3.3. Eye irritation. In: Eskes C, Zuang V (eds) Alternative (non-animal) methods for cosmetics testing: current status and future prospects. ATLA 33(1), 47–81Google Scholar
  14. 14.
    Scott L, Eskes C, Hoffman S, Adriaens E, Alepee N, Bufo M, Clothier R, Facchini D, Faller C, Guest R, Hamernik K, Harbell J, Hartung T, Kamp H, Le Varlet B, Meloni M, Mcnamee P, Osborn R, Pape W, Pfannenbecker U, Prinsen M, Seaman C, Spielmann H, Stokes W, Trouba K, Vassallo M, Van den Berghe C, Van Goethem F, Vinardell P, Zuang V (2010) A proposed eye irritation testing strategy to reduce and replace in vivo studies using bottom-up and top-down approaches. Toxicol In Vitro 24: 1–9PubMedCrossRefGoogle Scholar
  15. 15.
    EC (2008) Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. Official Journal of the European Union L353, 1-1355Google Scholar
  16. 16.
    United Nations (UN) (2011) Globally harmonized system of classification and labelling of chemicals (GHS), 4th revised ed. UN New York and Geneva. Available at http://www.unece.org/trans/danger/publi/ghs/ghs_rev04/04files_e.html. Accessed 12 April 2013
  17. 17.
    OECD (2012a) Test Guideline 405. OECD Guideline for the testing of chemicals: acute eye irritation/corrosion. paris, france: organisation for economic cooperation and development. Section 4, OECD Publishing. doi:  10.1787/9789264070646-en. Available at http://www.oecd.org/env/ehs/testing/section4healtheffects.htm
  18. 18.
    OECD (2013c) Series on Testing and Assessment n. 188: Streamlined summary document supporting OECD Test Guideline 438 on the isolated chicken eye for eye irritation/corrosion. Organisation for Economic Co-operation and Development, Paris. Available at: Available at http://www.oecd.org/env/ehs/testing/seriesontestingandassessmentpublicationsbynumber.htm http://www.oecd-ilibrary.org/environment/oecd-guidelines-for-the-testing-of-chemicals-section-4-health-effects_20745788. Accessed 3 Aug 2013
  19. 19.
    Prinsen MK (2006) The Draize eye test and in vitro alternatives, a left-handed marriage? Toxicol In Vitro 20:78–81PubMedCrossRefGoogle Scholar
  20. 20.
    Wilhelmus KR (2001) The Draize eye test. Surv Ophthalmol 45:493–515PubMedCrossRefGoogle Scholar
  21. 21.
    Adriaens E., Barroso J., Eskes C., Hoffmann S., McNamee P., Alépée N., Bessou-Touya S., De Smedt A., De Wever B., Pfannenbecker U., Magalie Tailhardat M. & Zuang V. (2014). Retrospective analysis of the Draize test for serious eye damage/eye irritation: importance of understanding the in vivo endpoints under UN GHS / EU CLP for the development and evaluation of in vitro test methods. Archives of Toxicology 88, 701–723.Google Scholar
  22. 22.
    Weil CS, Scala A (1971) Study of intra- and inter- laboratory variability in the results of rabbit eye and skin irritation tests. Toxicol Appl Pharmacol 19:276–360PubMedCrossRefGoogle Scholar
  23. 23.
    Marzulli FN, Ruggles DI (1973) Rabbit eye irritation test: collaborative study. J Assoc Off Anal Chem 56:905–914Google Scholar
  24. 24.
    Cormier EM, Parker RD, Henson C, Cruze LW, Merritt AK, Bruce RD, Osborne R (1996) Determination of the intra- and inter-laboratory reproducibility of the Low Volume Eye Test and its statistical relationship to the Draize test. Reg Toxicol Pharm 23:156–161CrossRefGoogle Scholar
  25. 25.
    Roggeband R, York M, Pericoi M, Braun W (2000) Eye irritation responses in rabbit and man after single applications of equal volumes of undiluted model liquid detergent products. Food Chem Toxicol 38:727–734PubMedCrossRefGoogle Scholar
  26. 26.
    Gershbein LL, McDonald JE (1977) Evaluation of the corneal irritancy of test shampoos and detergents in various animal species. Food Cosmet Toxicol 15:131–134PubMedCrossRefGoogle Scholar
  27. 27.
    ILSI Health and Environmental Sciences Institute (1996) Replacing the Draize eye irritation test: scientific background and research needs. J Toxicol Cutaneous Ocular Toxicol 15:211–234CrossRefGoogle Scholar
  28. 28.
    Rowan A (1980) The Draize test: a critique and proposals for alternatives. Institute for the Study of Animal Problems, Washington, DCGoogle Scholar
  29. 29.
    Zuang V, Barroso J, Cole T, Ceridono M, Eskes C (2010) ECVAM Bottom-Up/Top-Down Testing approach: testing strategy to reduce/replace the Draize eye test and validation/regulatory acceptance of in vitro assays: current status. ALTEX 27-S.I.: 241–244Google Scholar
  30. 30.
    OECD (2013a) Test No. 437: Bovine Corneal Opacity and Permeability Test Method for identifying i) Chemicals inducing serious eye damage and ii) chemicals not requiring classification for eye irritation or serious eye damage, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing. doi:  10.1787/9789264203846-en. Available at http://www.oecd-ilibrary.org/environment/oecd-guidelines-for-the-testing-of-chemicals-section-4-health-effects_20745788
  31. 31.
    OECD (2013d) Series on Testing and Assessment n. 189: Streamlined summary document supporting OECD Test Guideline 437 on the bovine corneal opacity and permeability for eye irritation/corrosion. Organisation for Economic Co-operation and Development, Paris. Available at Available at: http://www.oecd.org/env/ehs/testing/seriesontestingandassessmentpublicationsbynumber.htm http://www.oecd-ilibrary.org/environment/oecd-guidelines-for-the-testing-of-chemicals-section-4-health-effects_20745788. Accessed 3 Aug 2013
  32. 32.
    OECD (2013b) Test No. 438: Isolated Chicken Eye Test Method for identifying i) chemicals inducing serious eye damage and ii) chemicals not requiring classification for eye irritation or serious eye damage, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing. doi:  10.1787/9789264203860-en. Available at http://www.oecd-ilibrary.org/environment/oecd-guidelines-for-the-testing-of-chemicals-section-4-health-effects_20745788
  33. 33.
    OECD (2012b). Test Guideline 460. Fluorescein Leakage Test Method for identifying ocular corrosives and severe irritants, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing. doi:  10.1787/9789264185401-en. Available at: http://www.oecd.org/env/ehs/testing/section4healtheffects.htm
  34. 34.
    OECD (2012c). Draft test guideline on the Cytosensor Microphysiometer Test Method: an in vitro method for identifying ocular 3 corrosive and severe irritant chemicals as well as chemicals not classified as ocular irritants. Available at: http://www.oecd.org/env/ehs/testing/section4healtheffects.htm
  35. 35.
    Harbell JW, Koontz SW, Lewis RW, Lovell D, Acosta D (1997) IRAG Working Group 4. Cell cytotoxicity assays. Food Chem Toxicol 35:79–126PubMedCrossRefGoogle Scholar
  36. 36.
    Sheasgreen J, Kubilus J, Sennott H, Ogle P, Klausner M (1996) Reproducibility and correlation of epiocular, a three-dimensional tissue culture model of the human corneal epithelium. Toxicologist 30:128, Soc Toxicol (Reston, VA), Abstract 653Google Scholar
  37. 37.
    Kaluzhny Y, Kandárová H, Hayden P, Kubilus J, D’Argembeau-Thornton L, Klausner M (2011) Development of the EpiOcular(TM) eye irritation test for hazard identification and labelling of eye irritating chemicals in response to the requirements of the EU cosmetics directive and REACH legislation. Altern Lab Anim 39:339–364PubMedGoogle Scholar
  38. 38.
    Pfannenbecker U, Bessou-Touya S, Faller C, Harbell J, Jacob T, Raabe H, Tailhardat M, Alépée N, De Smedt A, De Wever B, Jones P, Kaluzhny Y, Le Varlet B, McNamee P, Marrec-Fairley M, Van Goethem F (2013) Cosmetics Europe multi-laboratory pre-validation of the EpiOcular™ reconstituted human tissue test method for the prediction of eye irritation. Toxicol In Vitro 27:619–626PubMedCrossRefGoogle Scholar
  39. 39.
    Freeman SJ, Alépée N, Barroso J et al (2010) Prospective validation study of reconstructed human tissue models for eye irritation testing. ALTEX 27(Special Issue):261–266Google Scholar
  40. 40.
    Zuang V, Schäffer M, Tuomainen AM, Amcoff P, Bernasconi C, Bremer S, Casati S, Castello P, Coecke S, Corvi R, Griesinger C, Roi AJ, Kirmizidis G, Prieto P, Worth A, Munn S, Berggren E, Whelan M (2013) EURL ECVAM progress report on the development, validation and regulatory acceptance of alternative methods (2010-2013). doi: 10.2788/90736, ISBN 978-92-79-29943-8. Publications Office of the European Union, Luxembourg, April 2013. Available at http://ihcp.jrc.ec.europa.eu/our_labs/eurl-ecvam/eurl-ecvam-releases-2013-progress-report-development-validation-regulatory-acceptance-alternative-methods/at_multi_download/file?name=EURL_ECVAM_progress_report_cosmetics_2013.pdf
  41. 41.
    Blazka ME, Harbell JW, Klauzner M, Raabe H, Kubilus J, Hsia F, Minerath B, Kotler M, Bagley DM (2000) Colgate-Palmolive’s program to validate the EpiOcularTM human tissue construct model. Toxicologist 54:188Google Scholar
  42. 42.
    Blazka ME, Harbell JW, Klausner M, Merrill J., Kubilus J, Kloos C, Bagley DM (2003) Evaluating the ocular irritation potential of 54 test articles using the EpiOcular human tissue construct (OCL-200). Poster presented at the Society of Toxicology meetingGoogle Scholar
  43. 43.
    Blazka M, Diaco M, Harbell J, Raabe H, Sizemore A, Wilt N, Bagley D (2005) Epiocular human cell construct: tissue viability and histological following exposure to surfactants. Presented at Society of Toxicology Annual Meeting, New Orleans, LA, 6–10 March 2005. Toxicologist 84:409Google Scholar
  44. 44.
    Ghassemi AR, Osborne K, Kohrman M, Her R, Kanengiser B (1997) Demonstrating the ocular safety of an eye cosmetic product using alternatives to animal eye irritation tests. Toxicologist Fund Appl Toxicol Suppl 36:43Google Scholar
  45. 45.
    Nguyen DH, Beuerman RW, DeWever B, Rosdy M (2003) Three-dimensional construct of the human corneal epithelium for in vitro toxicology. In: Salem H, Katz SA (eds) Alternative toxicological methods, chapter 14, 1st edn. CRC, New York, pp 147–159Google Scholar
  46. 46.
    Van Goethem F, Adriaens E, Alepee N, Straube F, De Wever B, Cappadoro M, Catoire S, Hansen E, Wolf A, Vanparys P (2006) Prevalidation of a new in vitro reconstituted human cornea model to assess the eye irritating potential of chemicals. Toxicol In Vitro 20:1–17PubMedCrossRefGoogle Scholar
  47. 47.
    Alépée N, Bessou-Touya S, Cotovio J, de Smedt A, de Wever B, Faller C, Jones P, Le Varlet B, Marrec-Fairley M, Pfannenbecker U, Tailhardat M, van Goethem F, McNamee P (2013) Cosmetics Europe multi-laboratory pre-validation of the SkinEthic™ reconstituted human corneal epithelium test method for the prediction of eye irritation. Toxicol In Vitro 27:1476–1488PubMedCrossRefGoogle Scholar
  48. 48.
    Gerberick GF, Vassallo JD, Foertsch LM, Price BB, Chaney JG, Lepoittevin JP (2007) Quantification of chemical peptide reactivity for screening contact allergens: a classification tree model approach. Toxicol Sci 97:417–427PubMedCrossRefGoogle Scholar
  49. 49.
    OECD (2005) Guidance document on the validation and international acceptance of new or updated test methods for hazard assessment. Environmental Health and Safety Monograph Series on Testing and Assessment No. 34. Available at http://www.oecd.org/document/30/0,3343,en_2649_34377_1916638_1_1_1_1,00.html. Accessed 12 Feb 2008
  50. 50.
    Hartung T, Bremer S, Casati S, Coecke S, Corvi R, Fortaner S, Gribaldo L, Halder M, Hoffmann S, Roi AJ, Prieto P, Sabbioni E, Scott L, Worth A, Zuang V (2004) A modular approach to the ECVAM principles on test validity. ATLA 32:467–472PubMedGoogle Scholar
  51. 51.
    ECHA (2012) R.7.2. Skin- and eye irritation/corrosion and respiratory irritation. In: Guidance on information requirements and chemical safety assessment. Chapter R.7a: Endpoint Specific Guidance. Version 2.0, p. 165-218. Available at http://echa.europa.eu/documents/10162/13632/information_requirements_r7a_en.pdf. Accessed 31 July 2013
  52. 52.
    Anon. (1996) Arreté du 29 Novembre 1996 rélatif aux méthodes officielles d'analyse nécessaires aux contrôles des produits cosmetiques. J Off République Française 300: 19137–19138Google Scholar
  53. 53.
    ANVISA (2012) Guide for the safety evaluation of cosmetic products, 2nd ed. Brasilia, 74 ppGoogle Scholar
  54. 54.
    ICCVAM (2006) Background review document—current status of in vitro test methods for identifying ocular corrosives and severe irritants: Hen’s egg test—chorioallantoic membrane test method. NIH publication n. 06-4515. Available at http://iccvam.niehs.nih.gov/docs/ocutox_docs/ocubrd/hetcam/hetcambrd.pdf. Accessed 31 July 2013
  55. 55.
    ICCVAM (2009). Background review document—current status of in vitro test methods for identifying mild/moderate ocular irritants: Hen’s egg test—chorioallantoic membrane test method. National Institute of Environmental Health Sciences, Resesarch Triangle Park, North Carolina, USA. Available at http://iccvam.niehs.nih.gov/docs/ocutox_docs/InVitro-2010/AppE-HET-Front-Body.pdf. Accessed 31 July 2013
  56. 56.
    ICCVAM (2010) Test method evaluation report: current validation status of in vitro test methods proposed for identifying eye injury hazard potential of chemicals and products. National Institutes of Health Publication Number 10-7553A. National Toxicology Program, North Carolina, USA. Available at http://iccvam.niehs.nih.gov/methods/ocutox/Transmit-2010.htm. Accessed 31 July 2013
  57. 57.
    Luepke NP (1985) Hen’s egg chorioallantoic membrane test for irritation potential. Food Chem Toxicol 23:287–291PubMedCrossRefGoogle Scholar
  58. 58.
    Barstadt R, Cortesi J, Janus J (1991) Use of Clonetics neutral red bioassay to optimize components of serum-free medium for normal human anchorage-dependent cells. In Vitro Cell Dev Biol 27:160Google Scholar
  59. 59.
    Eskes C, Spielmann H, Curren R, Clothier R, Gartlon J, Vinardell P, Mitjans M, Hoffmann S, Barroso J, McNamee P, Scott L, Cole T, Ceridono M, Pape W, Ohno Y, Zuang V (2009). The ECVAM retrospective validation study on cytotoxicity- and cell function-based in vitro assays for eye irritation. Poster presented at the VII World Congress on alternatives & animal use in the life science, Rome, ItalyGoogle Scholar
  60. 60.
    ESAC (2009) Statement on the scientific validity of cytotoxicity-/cell function-based in vitro assays for eye irritation testing. Available at http://ihcp.jrc.ec.europa.eu/our_labs/eurl-ecvam/validation-regulatory-acceptance/docs-eye-irritation/ESAC31_CBA_eye-irritation_20091005.pdf. Accessed 31 July 2013
  61. 61.
    ECVAM (2009) Validation management group comments on the peer review panel interim report regarding the retrospective weight-of-evidence validation of cytotoxicity- and cell function-based assays for eye irritation. Available at: http://ihcp.jrc.ec.europa.eu/our_labs/eurl-ecvam/validation-regulatory-acceptance/docs-eye-irritation/FINAL_VMGcomments_PRPreport_24June09.pdf. Accessed 31 July 2013
  62. 62.
    Takahashi Y, Koike M, Honda H, Ito Y, Sakaguchi H, Suzuki H, Nishiyama N (2008) Development of the short time exposure (STE) test: an in vitro eye irritation test using SIRC cells. Toxicol In vitro 22:760–770PubMedCrossRefGoogle Scholar
  63. 63.
    Takahashi Y, Hayashi T, Watanabe S, Hayashi K, Koike M, Aisawa N, Ebata S, Sakaguchi H, Nakamura T, Kuwahara H, Nishiyama N (2009) Inter-laboratory study of short time exposure (STE) test for predicting eye irritation potential of chemicals and correspondence to globally harmonized system (GHS) classification. J Toxicol Sci 34:611–626PubMedCrossRefGoogle Scholar
  64. 64.
    Takahashi Y, Hayashi T, Koike M, Sakaguchi H, Kuwahara H, Nishiyama N (2010) An interlaboratory study of the short time exposure (STE) test using SIRC cells for predicting eye irritation potential. Cutan Ocul Toxicol 29:77–90PubMedCrossRefGoogle Scholar
  65. 65.
    Takahashi Y, Hayashi K, Abo T, Koike M, Sakaguchi H, Nishiyama N (2011) The Short Time Exposure (STE) test for predicting eye irritation potential: intra-laboratory reproducibility and correspondence to globally harmonized system (GHS) and EU eye irritation classification for 109 chemicals. Toxicol In Vitro 25:1425–1434PubMedCrossRefGoogle Scholar
  66. 66.
    Sakaguchi H, Ota N, Omori T, Kuwahara H, Sozu T, Takagi Y, Takahashi Y, Tanigawa K, Nakanishi M, Nakamura T, Morimoto T, Wakuri S, Okamoto Y, Sakaguchi M, Hayashi T, Hanji T, Watanabe S (2011) Validation study of the Short Time Exposure (STE) test to assess the eye irritation potential of chemicals. Toxicol In Vitro 25:796–809PubMedCrossRefGoogle Scholar
  67. 67.
    Kojima H, Hayashi K, Sakaguchi H, Omori T, Otoizumi T, Sozu T, Kuwahara H, Hayashi T, Sakaguchi M, Toyoda A, Goto H, Watanabe S, Ahiko K, Nakamura T, Morimoto T (2013) Second-phase validation study of short time exposure test for assessment of eye irritation potency of chemicals. Toxicol In Vitro 27:1855–1869PubMedCrossRefGoogle Scholar
  68. 68.
    Burton ABG, York M, Lawrence RS (1981) The in vitro assessment of severe eye irritants. Food Cosmet Toxicol 19:471–480PubMedCrossRefGoogle Scholar
  69. 69.
    Maurer JK, Parker RD, Jester JV (2002) Extent of initial corneal injury as the mechanistic basis for ocular irritation: key findings and recommendations for the development of alternative assays. Regul Toxicol Pharmacol 36:106–117PubMedCrossRefGoogle Scholar
  70. 70.
    Jester JV, Ling J, Harbell J (2010) Measuring depth of injury (DOI) in an isolated rabbit eye irritation test (IRE) using biomarkers of cell death and viability. Toxicol In Vitro 24:597–604PubMedCrossRefGoogle Scholar
  71. 71.
    CEC—Commission of the European Communities (1991) Collaborative study on the evaluation of alternative methods to the eye irritation test. EC Document XI/632/91, V/E/1/131/91Google Scholar
  72. 72.
    Cooper KJ, Earl LK, Harbell J, Raabe H (2001) Prediction of ocular irritancy of prototype shampoo formulations by the isolated rabbit eye (IRE) test and bovine corneal opacity and permeability (BCOP) assay. Toxicology In Vitro 15:95–103PubMedCrossRefGoogle Scholar
  73. 73.
    Jones PA, Budynsky E, Cooper KJ, Decker D, Griffiths HA, Fentem JH (2001) Comparative evaluation of five in vitro tests for assessing the eye irritation potential of hair-care products. ATLA 29:669–692PubMedGoogle Scholar
  74. 74.
    Koëter HBWM, Prinsen MK (1985) Comparison of in vivo and in vitro eye irritancy test systems: a study with 34 substances, alternative methods in toxicology, chapter A9, vol 3. Mary Ann Liebert, Inc., New Rochelle, NYGoogle Scholar
  75. 75.
    Guerriero FJ, Seaman CW, Olsen MJ, Guest R, Whittingham A (2004) Retrospective assessment of the rabbit enucleated eye test (REET) as a screen to refine worker safety studies [Abstract No. 1282]. Toxicol Sci (The Toxicologist Supplement) 78(1-S)Google Scholar
  76. 76.
    ESAC (2007) ESAC Statement on the conclusions of the ICCVAM retrospective study on Organotypic in vitro assays as screening tests to identify potential ocular corrosives and severe irritants as determined by US EPA, EU (R41) AND UN GHS classifications in a tiered testing strategy, as part of a weight of evidence approach. Available at http://ihcp.jrc.ec.europa.eu/our_labs/eurl-ecvam/validation-regulatory-acceptance/docs-eye-irritation/ESAC26_statement_Organotypic_20070510_C.pdf. Accessed 31 July 2013
  77. 77.
    ICCVAM (2007) Test Method Evaluation Report on In vitro test methods for identifying ocular severe irritants and corrosives. ICCVAM-NICEATM. NIH publication n. 07-4517. Available at http://iccvam.niehs.nih.gov/methods/ocutox/ivocutox/ocu_tmer.htm. Accessed 31 July 2013
  78. 78.
    Spielmann H, Gerner I, Kalweit S, Moog R, Wirnsberger T, Krauser K, Kreiling R, Kreuzer H, Luepke NP, Miltenburger HG, Mueller N, Muermann P, Pape W, Siegemund B, Spengler J, Steiling W, Wiebel FJ (1991) Interlaboratory assessment of alternatives to the Draize eye irritation test in Germany. Toxicol In Vitro 5:539–542PubMedCrossRefGoogle Scholar
  79. 79.
    Steiling W, Bracher M, Courtellemont P, de Silva O (1999) The HET-CAM, a useful in vitro assay for assessing the eye irritation properties of cosmetic formulations and indigrents. Toxicol In Vitro 13:375–384PubMedCrossRefGoogle Scholar
  80. 80.
    OECD (2011) Series on Testing and Assessment n. 160. Guidance document on: the bovine corneal opacity and permeability (BCOP) and isolated chicken eye (ICE) test methods: Collection of tissues for histological evaluation and collection of data on non-severe irritants. Organisation for Economic Cooperation and Development, Paris, France. 58 pp. Available at http://search.oecd.org/officialdocuments/displaydocumentpdf/?cote=ENV/JM/MONO(2011)45&doclanguage=en. Accessed 19 June 2013
  81. 81.
    Prinsen MK, Schipper MEI, Wijnands MVW (2011) Histopathology in the isolated chicken eye test and comparison of different stainings of the cornea. Toxicol In Vitro 25:1475–1479PubMedCrossRefGoogle Scholar
  82. 82.
    Harbell JW, Mun G, Curren RD (2006). Application of histological evaluation to enhance the Bovine Opacity and Permeability (BCOP) assay. Poster presented at the Society of Toxicology Meeting, San Diego, USAGoogle Scholar
  83. 83.
    Wijnands M, Schiper MEI, Prinsen MK (2009). Histopathology in the Isolated Chicken Eye test: comparison of different stainings of the cornea. Poster presented at the VII World Congress on alternatives & animal use in the life science, Rome, ItalyGoogle Scholar
  84. 84.
    Raabe H, Bruner L, Snyder T, Wilt N, Harbell J (2005) Optimisation of an in vitro long term corneal culture assay. Poster presented at the 5th World Congress on alternatives and animal use in the life sciences, Berlin, GermanyGoogle Scholar
  85. 85.
    Piehl M, Gilotti A, Donovan A, DeGeorge G, Cerven D (2010) Novel cultured porcine corneal irritancy assay with reversibility endpoint. Toxicol In Vitro 24:231–239PubMedCrossRefGoogle Scholar
  86. 86.
    Piehl M, Carathers M, Soda R, Cerven D, DeGeorge G (2011) Porcine Corneal Ocular Reversibility Assay (PorCORA) predicts ocular damage and recovery for global regulatory agency hazard categories. Toxicol In Vitro 25:1912–1918PubMedCrossRefGoogle Scholar
  87. 87.
    Cerven DR, Michele P, DeGeorge G (2012) Development of the replacement ocular battery—tiered testing strategy of alternative toxicology tests to replace the need for rabbits. ESTIV Congress, Lisbon, Portugal, 16–19 Oct 2012Google Scholar
  88. 88.
    Frentz M, Goss M, Reim M, Schrage NF (2008) Repeated exposure to benzalkonium chloride in the Ex Vivo Eye Irritation Test (EVEIT): observation of isolated corneal damage and healing. ATLA 36:25–32PubMedGoogle Scholar
  89. 89.
    Spöler F, Kray S, Kray O, Panfil C, Schrage NF (2012) Observing reversibility of ocular damage in vitro: the ex-vivo eye irritation test (EVEIT). ESTIV Congress, Lisbon, Portugal, 16–19 Oct 2012Google Scholar
  90. 90.
    Kolle SN, Kandarova H, Wareing B, Ravenzwaay B, Landsiedel R (2011) In-house validation of the EpiOcularTM Eye Irritation Test and its combination with the bovine corneal opacity and permeability test for the assessment of ocular irritation. ATLA 39:365–387PubMedGoogle Scholar
  91. 91.
    Hayashi K, Mori T, Abo T, Ooshima K, Hayashi T, Komano T, Takahashi Y, Sakaguchi H, Takatsu A, Nishiyama N (2012) Two-stage bottom-up tiered approach combining several alternatives for identification of eye irritation potential of chemicals including insoluble or volatile substances. Toxicol In Vitro 26:1199–1208PubMedCrossRefGoogle Scholar
  92. 92.
    Engelke M, Zorn-Kruppa M, Gabel D, Reisinger K, Rusche B, Mewes KR (2013) A human hemi-cornea model for eye irritation testing: quality control of production, reliability and predictive capacity. Toxicol In Vitro 27:458–468PubMedCrossRefGoogle Scholar
  93. 93.
    Forsby A, Norman KG, El Andaloussi-Lilja J, Lundqvist J, Walczak V, Curren R, Martin K, Tierney NK (2012) Using novel in vitro NociOcular assay based on TRPV1 channel activation for prediction of eye sting potential of baby shampoos. Toxicol Sci 129:325–331PubMedCrossRefGoogle Scholar
  94. 94.
    Lilia J, Forsby A (2004) Development of a sensory neuronal cell model for the estimation of mild eye irritation. ATLA 32: 339–343Google Scholar
  95. 95.
    Adriaens E, Bytheway H, De Wever B, Eschrich D, Guest R, Hansen E, Vanparys P, Schoeters G, Warren N, Weltens R, Whittingham A, Remon JP (2008) Successful prevalidation of the slug mucosal irritation test to assess the eye irritation potency of chemicals. Toxicol In Vitro 22:1285–1296PubMedCrossRefGoogle Scholar
  96. 96.
    EC (2001) Commission Directive 2001/59/EC of 6 August 2001 adapting to technical progress for the 28th time Council Directive 67/548/EEC on the approximation of laws, regulations and administrative provisions relating to the classification, packaging and labelling of dangerous substances. Off J Eur Commun L 225: 1–333Google Scholar
  97. 97.
    Lenoir J, Claerhout I, Kestelyn P, Klomp A, Remon JP, Adriaens E (2011) The slug mucosal irritation (SMI) assay: development of a screening tool for the evaluation of ocular discomfort caused by shampoos. Toxicol In Vitro 25:1919–1925PubMedCrossRefGoogle Scholar
  98. 98.
    Yamaguchi H, Kojima H, Takezawa T (2013) Vitrigel-eye irritancy test method using HCE-T cells. Toxicol Sci. doi:  10.1093/toxsci/kft159. Jul 20 (Epub ahead of print)
  99. 99.
    Van den Berghe C, Guillet MC, Compan D (2005) Performance of porcine corneal opacity and permeability assay to predict eye irritation for water-soluble cosmetic ingredients. Toxicol In Vitro 19:823–830PubMedCrossRefGoogle Scholar
  100. 100.
    Debbasch C, Ebenhahn C, Dami N, Pericoi M, Van den Berghe C, Cottin M, Nohynek GK (2005) Eye irritation of low-irritant cosmetic formulations: correlation of in vitro results with clinical data and product composition. Food Chem Toxicol 43:155–165PubMedCrossRefGoogle Scholar
  101. 101.
    Meloni M, Pauly A, De Servi B, Le Varlet B, Baudouin C (2010) Occludin gene expression as an early in vitro sign for mild eye irritation assessment. Toxicol In Vitro 24: 276–285PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Chantra Eskes
    • 1
  • Erwin van Vliet
    • 1
  • Michael Schäffer
    • 2
  • Valérie Zuang
    • 1
    • 2
    Email author
  1. 1.SeCAM Services and Consultation on Alternative MethodsAgnoSwitzerland
  2. 2.European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), Systems Toxicology Unit, TP 580Institute for Health and Consumer Protection, DG Joint Research Centre (JRC), European CommissionIspraItaly

Personalised recommendations