Advertisement

Use Model-Based Analysis of ChIP-Seq (MACS) to Analyze Short Reads Generated by Sequencing Protein–DNA Interactions in Embryonic Stem Cells

Part of the Methods in Molecular Biology book series (MIMB, volume 1150)

Abstract

Model-based Analysis of ChIP-Seq (MACS) is a computational algorithm for identifying genome-wide protein–DNA interaction from ChIP-Seq data. MACS combines multiple modules to process aligned ChIP-Seq reads for either transcription factor or histone modification by removing redundant reads, estimating fragment length, building signal profile, calculating peak enrichment, and refining and reporting peak calls. In this protocol, we provide a detailed demonstration of how to apply MACS to analyze ChIP-Seq datasets related to protein–DNA interactions in embryonic stem cells (ES cells). Instruction on how to interpret and visualize the results is also provided. MACS is an open-source and is available from http://github.com/taoliu/MACS.

Key words

ChIP-seq Peak calling Transcription factor Histone modification 

Notes

Acknowledgment

This work is supported by Startup funds from University at Buffalo.

References

  1. 1.
    Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of in vivo protein–DNA interactions. Science 316:1497–1502PubMedCrossRefGoogle Scholar
  2. 2.
    Barski A et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837PubMedCrossRefGoogle Scholar
  3. 3.
    Robertson G et al (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4:651–657PubMedCrossRefGoogle Scholar
  4. 4.
    Mikkelsen TS et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    ENCODE Project Consortium et al (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74CrossRefGoogle Scholar
  6. 6.
    Bernstein BE et al (2010) The NIH roadmap epigenomics mapping consortium. Nat Biotechnol 28:1045–1048PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Pepke S, Wold B, Mortazavi A (2009) Computation for ChIP-seq and RNA-seq studies. Nat Methods 6:S22–S32PubMedCrossRefGoogle Scholar
  8. 8.
    Zhang Y et al (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:R137PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Landt SG et al (2012) ChIP-seq guidelines and practices used by the ENCODE and modENCODE consortia. Genome Res 22:1813–1831PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Li H et al (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Kent WJ, Zweig AS, Barber G, Hinrichs AS, Karolchik D (2010) BigWig and BigBed: enabling browsing of large distributed datasets. Bioinformatics 26:2204–2207PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinformatics 14:178–192PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of BiochemistryUniversity at Buffalo-COEBLSBuffaloUSA

Personalised recommendations