Direct Reprogramming of Cardiac Fibroblasts to Cardiomyocytes Using MicroRNAs

  • Tilanthi Jayawardena
  • Maria Mirotsou
  • Victor J. Dzau
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1150)

Abstract

The therapeutic administration of microRNAs represents an innovative reprogramming strategy with which to advance cardiac regeneration and personalized medicine. Recently, a distinct set of microRNAs was found capable of converting murine fibroblasts to cardiomyocyte-like cells in vitro. Further treatment with JAK inhibitor I significantly enhanced the efficiency of the microRNA-mediated reprogramming (Jayawardena et al., Circ Res 110(11):1465–1473, 2012). This novel technique serves as an initial tool for switching the cell fate of cardiac fibroblasts toward the cardiomyocyte lineage using microRNAs. As the budding field of reprogramming biology develops, we hope that a thorough examination of the chemical, physical, and temporal parameters determining reprogramming efficiency and maturation will enable a better understanding of the mechanisms governing cardiac cell fate and provide new approaches for drug discovery and therapy for cardiovascular diseases.

Key words

Reprogramming Cardiac Cardiomyocyte MicroRNA Fibroblast Regeneration Transfection 

References

  1. 1.
    Yoshida Y, Yamanaka S (2012) An emerging strategy of gene therapy for cardiac disease. Circ Res 111(9):1108–1110PubMedCrossRefGoogle Scholar
  2. 2.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676PubMedCrossRefGoogle Scholar
  3. 3.
    Jayawardena TM et al (2012) MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res 110(11):1465–1473PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Nam YJ et al (2013) Reprogramming of human fibroblasts toward a cardiac fate. Proc Natl Acad Sci U S A 110(14):5588–5593PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Song K et al (2012) Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485(7400):599–604PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Qian L et al (2012) In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485(7400):593–598PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Mummery C (2011) Induced pluripotent stem cells—a cautionary note. N Engl J Med 364(22):2160–2162PubMedCrossRefGoogle Scholar
  8. 8.
    Yamashita T et al (2011) Tumorigenic development of induced pluripotent stem cells in ischemic mouse brain. Cell Transplant 20(6):883–891PubMedCrossRefGoogle Scholar
  9. 9.
    Christoforou N et al (2013) Induced pluripotent stem cell-derived cardiac progenitors differentiate to cardiomyocytes and form biosynthetic tissues. PLoS One 8(6):e65963PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Protze S et al (2012) A new approach to transcription factor screening for reprogramming of fibroblasts to cardiomyocyte-like cells. J Mol Cell Cardiol 53(3):323–332PubMedCrossRefGoogle Scholar
  11. 11.
    Stiber J et al (2008) STIM1 signalling controls store-operated calcium entry required for development and contractile function in skeletal muscle. Nat Cell Biol 10(6):688–697PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Eckel J et al (2011) TRPC6 enhances angiotensin II-induced albuminuria. J Am Soc Nephrol 22(3):526–535PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Tilanthi Jayawardena
    • 1
  • Maria Mirotsou
    • 1
  • Victor J. Dzau
    • 1
  1. 1.Division of Cardiology, Department of MedicineMandel Center for Hypertension and Atherosclerosis Research, and the Cardiovascular Research Center, Duke University Medical CenterDurhamUSA

Personalised recommendations