Assessing Pseudomonas Virulence with a Nonmammalian Host: Drosophila melanogaster

  • Samantha Haller
  • Stefanie Limmer
  • Dominique FerrandonEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1149)


Drosophila melanogaster flies represent an interesting model to study host–pathogen interactions as: (1) they are cheap and easy to raise rapidly and do not bring up ethical issues, (2) available genetic tools are highly sophisticated, for instance allowing tissue-specific alteration of gene expression, e.g., of immune genes, (3) they have a relatively complex organization, with distinct digestive tract and body cavity in which local or systemic infections, respectively, take place, (4) a medium throughput can be achieved in genetic screens, for instance looking for Pseudomonas aeruginosa mutants with altered virulence. We present here the techniques used to investigate host–pathogen relationships, namely the two major models of infections as well as the relevant parameters used to monitor the infection (survival, bacterial titer, induction of host immune response).

Key words

Survival assay Bacterial titer Host–pathogen interactions Genetic screens for virulence factors Drosophila septic injury model Drosophila oral infection model 



We thank Marie-Céline Lafarge for expert technical help, Pr. Jean-Luc Imler for the sequences of the viral PCR primers and Dr. Sebastian Niehus for critical reading of the manuscript. Work in the group is funded by CNRS, Agence Nationale de la Recherche, a National Institute of Health PO1 AI085581 grant (coordinator: Pr. F. Ausubel), and Fondation pour la Recherche Médicale (Equipe FRM).


  1. 1.
    Mahajan-Miklos S, Tan MW, Rahme LG, Ausubel FM (1999) Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell 96:47–56PubMedCrossRefGoogle Scholar
  2. 2.
    Rahme LG, Ausubel FM, Cao H, Drenkard E, Goumnerov BC, Lau GW, Mahajan-Miklos S, Plotnikova J, Tan MW, Tsongalis J, Walendziewicz CL, Tompkins RG (2000) Plants and animals share functionally common bacterial virulence factors. Proc Natl Acad Sci U S A 97:8815–8821PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Kurz CL, Chauvet S, Andres E, Aurouze M, Vallet I, Michel GP, Uh M, Celli J, Filloux A, De Bentzmann S, Steinmetz I, Hoffmann JA, Finlay BB, Gorvel JP, Ferrandon D, Ewbank JJ (2003) Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening. EMBO J 22:1451–1460PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Limmer S, Haller S, Drenkard E, Lee J, Yu S, Kocks C, Ausubel FM, Ferrandon D (2011) Pseudomonas aeruginosa RhlR is required to neutralize the cellular immune response in a Drosophila melanogaster oral infection model. Proc Natl Acad Sci U S A 108:17378–17383PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Lemaitre B, Hoffmann J (2007) The Host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743PubMedCrossRefGoogle Scholar
  6. 6.
    Ferrandon D, Imler JL, Hetru C, Hoffmann JA (2007) The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat Rev Immunol 7:862–874PubMedCrossRefGoogle Scholar
  7. 7.
    Stuart LM, Ezekowitz RA (2008) Phagocytosis and comparative innate immunity: learning on the fly. Nat Rev Immunol 8:131–141PubMedCrossRefGoogle Scholar
  8. 8.
    Ferrandon D (2013) The complementary facets of epithelial host defenses in the genetic model organism Drosophila melanogaster: from resistance to resilience. Curr Opin Immunol 25:59–70Google Scholar
  9. 9.
    Apidianakis Y, Rahme LG (2009) Drosophila melanogaster as a model host for studying Pseudomonas aeruginosa infection. Nat Protoc 4:1285–1294PubMedCrossRefGoogle Scholar
  10. 10.
    Limmer S, Quintin J, Hetru C, Ferrandon D (2011) Virulence on the fly: Drosophila melanogaster as a model genetic organism to decipher host-pathogen interactions. Curr Drug Targets 12:978–999PubMedCrossRefGoogle Scholar
  11. 11.
    Lau GW, Goumnerov BC, Walendziewicz CL, Hewitson J, Xiao W, Mahajan-Miklos S, Tompkins RG, Perkins LA, Rahme LG (2003) The Drosophila melanogaster toll pathway participates in resistance to infection by the gram-negative human pathogen Pseudomonas aeruginosa. Infect Immun 71:4059–4066PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Apidianakis Y, Mindrinos MN, Xiao W, Lau GW, Baldini RL, Davis RW, Rahme LG (2005) Profiling early infection responses: Pseudomonas aeruginosa eludes host defenses by suppressing antimicrobial peptide gene expression. Proc Natl Acad Sci U S A 102:2573–2578PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Fauvarque MO, Bergeret E, Chabert J, Dacheux D, Satre M, Attree I (2002) Role and activation of type III secretion system genes in Pseudomonas aeruginosa-induced Drosophila killing. Microb Pathog 32:287–295PubMedCrossRefGoogle Scholar
  14. 14.
    Boman HG, Nilsson I, Rasmuson B (1972) Inducible antibacterial defence system in Drosophila. Nature 237:232–235PubMedCrossRefGoogle Scholar
  15. 15.
    Apidianakis Y, Pitsouli C, Perrimon N, Rahme L (2009) Synergy between bacterial infection and genetic predisposition in intestinal dysplasia. Proc Natl Acad Sci U S A 106:20883–20888PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Ashburner M, Golic KG, Hawley RS (2005) Drosophila. A laboratory handbook, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  17. 17.
    Greenspan R (2004) Fly pushing: the theory and practice of Drosophila genetics, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  18. 18.
    Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415PubMedGoogle Scholar
  19. 19.
    McGuire SE, Roman G, Davis RL (2004) Gene expression systems in Drosophila: a synthesis of time and space. Trends Genet 20:384–391PubMedCrossRefGoogle Scholar
  20. 20.
    Elrod-Erickson M, Mishra S, Schneider D (2000) Interactions between the cellular and humoral immune responses in Drosophila. Curr Biol 10:781–784PubMedCrossRefGoogle Scholar
  21. 21.
    Ferrandon D, Jung AC, Criqui MC, Lemaitre B, Uttenweiler-Joseph S, Michaut L, Reichhart JM, Hoffmann JA (1998) A drosomycin-GFP reporter transgene reveals a local immune response in Drosophila that is not dependent on the Toll pathway. EMBO J 17:1217–1227PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Tzou P, Ohresser S, Ferrandon D, Capovilla M, Reichhart JM, Lemaitre B, Hoffmann JA, Imler JL (2000) Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13:737–748PubMedCrossRefGoogle Scholar
  23. 23.
    Reichhart JM, Meister M, Dimarcq JL, Zachary D, Hoffmann D, Ruiz C, Richards G, Hoffmann JA (1992) Insect immunity – developmental and inducible activity of the Drosophila diptericin promoter. EMBO J 11:1469–1477PubMedCentralPubMedGoogle Scholar
  24. 24.
    Cuttell L, Vaughan A, Silva E, Escaron CJ, Lavine M, Van Goethem E, Eid JP, Quirin M, Franc NC (2008) Undertaker, a Drosophila Junctophilin, links Draper-mediated phagocytosis and calcium homeostasis. Cell 135:524–534PubMedCrossRefGoogle Scholar
  25. 25.
    Mulcahy H, Sibley CD, Surette MG, Lewenza S (2011) Drosophila melanogaster as an animal model for the study of Pseudomonas aeruginosa biofilm infections in vivo. PLoS Pathog 7:e1002299PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Samantha Haller
    • 1
  • Stefanie Limmer
    • 2
  • Dominique Ferrandon
    • 1
    Email author
  1. 1.Equipe Fondation Recherche MédicaleUPR 9022 du CNRS, Université de Strasbourg, IBMCStrasbourg CedexFrance
  2. 2.Institut für Neuro- und VerhaltensbiologieMünsterGermany

Personalised recommendations