Methods for Studying Biofilm Formation: Flow Cells and Confocal Laser Scanning Microscopy

  • Tim Tolker-NielsenEmail author
  • Claus Sternberg
Part of the Methods in Molecular Biology book series (MIMB, volume 1149)


In this chapter methods for growing and analyzing biofilms under hydrodynamic conditions in flow cells are described. Use of flow cells allows for direct microscopic investigation of biofilm formation. The flow in these chambers is essentially laminar, which means that the biofilms can be grown under highly controlled conditions, and that perturbations such as addition of antibiotics or change of the growth medium can be done efficiently at a defined time point. The protocol includes construction of the flow cell and the bubble trap, assembly and sterilization of the flow cell system, inoculation of the flow cells, running of the system, confocal laser scanning microscopy and image analysis, and disassembly and cleaning of the system.

Key words

Biofilm Flow cell Confocal laser scanning microscopy 



Research by TT-N is supported by the Danish Research Council, the Lundbeck foundation, Novo Seeds, and Tandlægefonden. Research by CS is supported by the Danish National Advanced Technology Foundation.


  1. 1.
    McCoy WF, Bryers JD, Robbins J, Costerton JW (1981) Observations of fouling biofilm formation. Can J Microbiol 27:910–917PubMedCrossRefGoogle Scholar
  2. 2.
    Wolfaardt GM, Lawrence JR, Robarts RD, Caldwell SJ, Caldwell DE (1994) Multicellular organization in a degradative biofilm community. Appl Environ Microbiol 60:434–446PubMedCentralPubMedGoogle Scholar
  3. 3.
    Stoodley P, Lewandowski Z, Boyle JD, Lappin-Scott HM (1999) The formation of migratory ripples in a mixed species bacterial biofilm growing in turbulent flow. Environ Microbiol 1:447–455PubMedCrossRefGoogle Scholar
  4. 4.
    Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Goeres DM, Hamilton MA, Beck NA, Buckingham-Meyer K, Hilyard JD, Loetterle LR, Lorenz LA, Walker DK, Stewart PS (2009) A method for growing a biofilm under low shear at the air–liquid interface using the drip flow biofilm reactor. Nat Protoc 4:783–788PubMedCrossRefGoogle Scholar
  6. 6.
    Lawrence JR, Korber DR, Hoyle BD, Costerton JW, Caldwell DE (1991) Optical sectioning of microbial biofilms. J Bacteriol 173:6558–6567PubMedCentralPubMedGoogle Scholar
  7. 7.
    Nielsen AT, Tolker-Nielsen T, Barken KB, Molin S (2000) Role of commensal relationships on the spatial structure of a surface-attached microbial consortium. Environ Microbiol 2:59–68PubMedCrossRefGoogle Scholar
  8. 8.
    Neu T, Swerhone GD, Lawrence JR (2001) Assessment of lectin-binding analysis for in situ detection of glycoconjugates in biofilm systems. Microbiology 147:299–313PubMedGoogle Scholar
  9. 9.
    Hentzer M, Riedel K, Rasmussen TB, Heydorn A, Andersen JB, Parsek MR, Rice SA, Eberl L, Molin S, Hoiby N, Kjelleberg S, Givskov M (2002) Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148:87–102PubMedGoogle Scholar
  10. 10.
    Klausen M, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T (2003) Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol 50:61–68PubMedCrossRefGoogle Scholar
  11. 11.
    Pamp SJ, Sternberg C, Tolker-Nielsen T (2009) Insight into the microbial multicellular lifestyle via flow-cell technology and confocal microscopy. Cytometry A 75A:90–103CrossRefGoogle Scholar
  12. 12.
    Kuehn M, Hausner M, Bungartz HJ, Wagner M, Wilderer PA, Wuertz S (1998) Automated confocal laser scanning microscopy and semiautomated image processing for analysis of biofilms. Appl Environ Microbiol 64:4115–4127PubMedCentralPubMedGoogle Scholar
  13. 13.
    Beyenal H, Donovan C, Lewandowski Z, Harkin G (2004) Three-dimensional biofilm structure quantification. J Microbiol Methods 59:395–413PubMedCrossRefGoogle Scholar
  14. 14.
    Yang X, Beyenal H, Harkin G, Lewandowski Z (2000) Quantifying biofilm structure using image analysis. J Microbiol Methods 39:109–119PubMedCrossRefGoogle Scholar
  15. 15.
    Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersboll BK, Molin S (2000) Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146:2395–2407PubMedGoogle Scholar
  16. 16.
  17. 17.
    Pamp SJ, Tolker-Nielsen T (2007) Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. J Bacteriol 189:2531–2539PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Palmer RJ, Haagensen JA, Neu TR, Sternberg C (2006) Conforcal microscopy of biofilms—statiotemporal approaches. In: Pawley JB (ed) Handbook of biological confocal microscopy. Springer, New York, pp 882–900Google Scholar
  19. 19.
    Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Biophoton Int 11:36–41Google Scholar
  20. 20.
  21. 21.
    Daims H, Lucker S, Wagner M (2006) daime, a novel image analysis program for microbial ecology and biofilm research. Environ Microbiol 8:200–213PubMedCrossRefGoogle Scholar
  22. 22.
  23. 23.
    Crusz SA, Popat R, Rybtke MT, Camara M, Givskov M, Tolker-Nielsen T, Diggle SP, Williams P (2012) Bursting the bubble on bacterial biofilms: a flow cell methodology. Biofouling 28:835–842PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Tolker-Nielsen T, Sternberg C (2011) Growing and analyzing biofilms in flow chambers. In: Boyle A (ed) Current protocols in microbiology. Wiley, New York, pp 1B.2.1–1B.2.17Google Scholar
  25. 25.
    Haagensen JA, Regenberg B, Sternberg C (2011) Advanced microscopy of microbial cells. Adv Biochem Eng Biotechnol 124:21–54PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of International Health, Immunology and Microbiology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagen NDenmark
  2. 2.Department of Systems BiologyTechnical University of DenmarkKongens LyngbyDenmark

Personalised recommendations