Advertisement

Optochemical Activation of Kinase Function in Live Cells

  • Andrei V. Karginov
  • Klaus M. Hahn
  • Alexander Deiters
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1148)

Abstract

Manipulation of protein kinase activity is widely used to dissect signaling pathways controlling physiological and pathological processes. Common methods often cannot provide the desired spatial and temporal resolution in control of kinase activity. Regulation of kinase activity by photocaged kinase inhibitors has been successfully used to achieve tight temporal and local control, but inhibitors are limited to inactivation of kinases and often do not provide the desired specificity. Here we report detailed methods for light-mediated activation of kinases in living cells using engineered rapamycin-regulated kinases in conjunction with a photocaged analog of rapamycin.

Key words

Kinase Phosphorylation Rapamycin FKBP12 Caging Light activation 

Notes

Acknowledgments

Dr. Karginov, Dr. Hahn, and Dr. Deiters were supported by the NIH (R21 RCA159179A to AVK, R01 GM057464 to KMH, and R01 GM079114 to AD).

References

  1. 1.
    Bishop AC, Buzko O, Shokat KM (2001) Magic bullets for protein kinases. Trends Cell Biol 11:167–172PubMedCrossRefGoogle Scholar
  2. 2.
    Spencer DM, Wandless TJ, Schreiber SL, Crabtree GR (1993) Controlling signal transduction with synthetic ligands. Science 262: 1019–1024PubMedCrossRefGoogle Scholar
  3. 3.
    Qiao Y, Molina H, Pandey A, Zhang J, Cole PA (2006) Chemical rescue of a mutant enzyme in living cells. Science 311:1293–1297PubMedCrossRefGoogle Scholar
  4. 4.
    Karginov AV, Ding F, Kota P, Dokholyan NV, Hahn KM (2010) Engineered allosteric activation of kinases in living cells. Nat Biotechnol 28:743–747PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Karginov AV, Hahn KM (2011) Allosteric activation of kinases: design and application of RapR kinases. Curr Protoc Cell Biol Chapter 14: Unit 14. 13Google Scholar
  6. 6.
    Dagliyan O, Shirvanyants D, Karginov AV, Ding F, Fee L, Chandrasekaran SN, Freisinger CM, Smolen GA, Huttenlocher A, Hahn KM, Dokholyan NV (2013) Rational design of a ligand-controlled protein conformational switch. Proc Natl Acad Sci U S A 110:6800–6804PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Karginov AV, Zou Y, Shirvanyants D, Kota P, Dokholyan NV, Young DD, Hahn KM, Deiters A (2010) Light regulation of protein dimerization and kinase activity in living cells using photocaged rapamycin and engineered FKBP. J Am Chem Soc 133:420–423PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Riggsbee CW, Deiters A (2010) Recent advances in the photochemical control of protein function. Trends Biotechnol 28:468–475PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Mayer G, Heckel A (2006) Biologically active molecules with a “light switch”. Angew Chem Int Ed Engl 45:4900–4921PubMedCrossRefGoogle Scholar
  10. 10.
    Young DD, Deiters A (2007) Photochemical control of biological processes. Org Biomol Chem 5:999–1005PubMedCrossRefGoogle Scholar
  11. 11.
    Deiters A (2010) Principles and applications of the photochemical control of cellular processes. Chembiochem 11:47–53PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Deiters A (2009) Light activation as a method of regulating and studying gene expression. Curr Opin Chem Biol 13:678–686PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Tang X, Dmochowski IJ (2007) Regulating gene expression with light-activated oligonucleotides. Mol Biosyst 3:100–110PubMedCrossRefGoogle Scholar
  14. 14.
    Lawrence DS (2005) The preparation and in vivo applications of caged peptides and proteins. Curr Opin Chem Biol 9:570–575PubMedCrossRefGoogle Scholar
  15. 15.
    Curley K, Lawrence DS (1999) Light-activated proteins. Curr Opin Chem Biol 3:84–88PubMedCrossRefGoogle Scholar
  16. 16.
    Lee HM, Larson DR, Lawrence DS (2009) Illuminating the chemistry of life: design, synthesis, and applications of “caged” and related photoresponsive compounds. ACS Chem Biol 4:409–427PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Dorman G, Prestwich GD (2000) Using photolabile ligands in drug discovery and development. Trends Biotechnol 18:64–77PubMedCrossRefGoogle Scholar
  18. 18.
    Adams SR, Tsien RY (1993) Controlling cell chemistry with caged compounds. Annu Rev Physiol 55:755–784PubMedCrossRefGoogle Scholar
  19. 19.
    Dong Q, Svoboda K, Tiersch TR, Monroe WT (2007) Photobiological effects of UVA and UVB light in zebrafish embryos: evidence for a competent photorepair system. J Photochem Photobiol B 88:137–146PubMedCrossRefGoogle Scholar
  20. 20.
    Schindl A, Klosner G, Honigsmann H, Jori G, Calzavara-Pinton PC, Trautinger F (1998) Flow cytometric quantification of UV-induced cell death in a human squamous cell carcinoma-derived cell line: dose and kinetic studies. J Photochem Photobiol B 44:97–106PubMedCrossRefGoogle Scholar
  21. 21.
    Robert C, Muel B, Benoit A, Dubertret L, Sarasin A, Stary A (1996) Cell survival and shuttle vector mutagenesis induced by ultraviolet A and ultraviolet B radiation in a human cell line. J Invest Dermatol 106:721–728PubMedCrossRefGoogle Scholar
  22. 22.
    Lyons PD, Dunty JM, Schaefer EM, Schaller MD (2001) Inhibition of the catalytic activity of cell adhesion kinase beta by protein-tyrosine phosphatase-PEST-mediated dephosphorylation. J Biol Chem 276:24422–24431PubMedCrossRefGoogle Scholar
  23. 23.
    Lusic H, Deiters A (2006) A New photocaging group for aromatic N-heterocycles. Synthesis 8:2147–2150Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Andrei V. Karginov
    • 1
  • Klaus M. Hahn
    • 2
  • Alexander Deiters
    • 3
  1. 1.Department of PharmacologyUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Department of PharmacologyUniversity of North Carolina at Chapel HillChapel HillUSA
  3. 3.Department of ChemistryUniversity of PittsburghPittsburghUSA

Personalised recommendations