Skip to main content

A “How-To” Guide to the Stark Spectroscopy of Flavins and Flavoproteins

  • Protocol
  • First Online:
Flavins and Flavoproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1146))

Abstract

Flavins and flavoproteins have been studied by a plethora of spectroscopic techniques. Beginning with the characterization of DNA photolyases and the discovery of the diversity of roles played by excited-state flavins in photobiology, the characterization of the electronic excited state of flavins has become increasingly important. In this protocol, we provide a guide to using Stark spectroscopy in obtaining the degree of electronic charge redistribution in simple flavins and in flavoproteins. Stark spectroscopy is technically simpler than more common approaches used to explore the structure of the excited state, considerably cheaper to implement, and yet very powerful in its scope. At the end of this guide, we present data taken on non-photobiological flavoproteins, glutathione reductase and lipoamide dehydrogenase, that suggest that Stark spectroscopy is a unique way to elucidate the electrostatic environment that the flavin cofactor experiences bound inside the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kay CWM, Bacher A, Fischer M, Richter G, Schleicher E, Weber S (2006) Blue light-initiated DNA repair by photolyase. Compr Series Photochem Photobiol Sci 6:151–182

    CAS  Google Scholar 

  2. Sancar A (2003) Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem Rev 103: 2203–2237

    Article  PubMed  CAS  Google Scholar 

  3. Losi A (2007) Flavin-based blue-light photosensors: a photobiophysics update. Photochem Photobiol 83:1283–1300

    Article  PubMed  CAS  Google Scholar 

  4. Kennis JTM, Alexandre MTA (2006) Mechanisms of light activation in flavin-binding photoreceptors. Compr Series Photochem Photobiol Sci 6:287–319

    CAS  Google Scholar 

  5. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  6. Matsika S (2007) Conical intersections in molecular systems. Rev Comput Chem 23:83–124

    CAS  Google Scholar 

  7. Kim JE, McCamant DW, Zhu L, Mathies RA (2001) Resonance Raman structural evidence that the cis-to-trans isomerization in rhodopsin occurs in femtoseconds. J Phys Chem B 105:1240–1249

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Schelvis JPM, Ramsey M, Sokolova O, Tavares C, Cecala C, Connell K, Wagner S, Gindt YM (2003) Resonance Raman and UV-Vis spectroscopic characterization of FADH.bul. in the complex of photolyase with UV-damaged DNA. J Phys Chem B 107:12352–12362

    Article  CAS  Google Scholar 

  9. Sokolova O, Cecala C, Gopal A, Cortazar F, McDowell-Buchanan C, Sancar A, Gindt YM, Schelvis JPM (2007) Resonance Raman spectroscopic investigation of the light-harvesting chromophore in Escherichia coli photolyase and Vibrio cholerae cryptochrome-1. Biochemistry 46:3673–3681

    Article  PubMed  CAS  Google Scholar 

  10. Su Y, Tripathi GNR (1994) Time-resolved resonance Raman observation of protein-free riboflavin semiquinone radicals. J Am Chem Soc 116:4405–4407

    Article  CAS  Google Scholar 

  11. Sakai M, Takahashi H (1996) One-electron photoreduction of flavin mononucleotide: time-resolved resonance Raman and absorption study. J Mol Struct 379:9–18

    Article  CAS  Google Scholar 

  12. Kay CWM, Feicht R, Schulz K, Sadewater P, Sancar A, Bacher A, Moebius K, Richter G, Weber S (1999) EPR, ENDOR, and TRIPLE resonance spectroscopy on the neutral flavin radical in Escherichia coli DNA photolyase. Biochemistry 38:16740–16748

    Article  PubMed  CAS  Google Scholar 

  13. Aubert C, Brettel K, Mathis P, Eker APM, Boussac A (1999) EPR detection of the transient tyrosyl radical in DNA photolyase from Anacystis nidulans. J Am Chem Soc 121:8659–8660

    Article  CAS  Google Scholar 

  14. Li GF, Glusac KD (2009) The role of adenine in fast excited-state deactivation of FAD: a femtosecond mid-IR transient absorption study. J Phys Chem B 113:9059–9061

    Article  PubMed  CAS  Google Scholar 

  15. Kim YS, Hochstrasser RM (2009) Applications of 2D IR spectroscopy to peptides, proteins, and hydrogen-bond dynamics. J Phys Chem B 113:8231–8251

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Ganim Z, Chung HS, Smith AW, Deflores LP, Jones KC, Tokmakoff A (2008) Amide I two-dimensional infrared Spectroscopy of proteins. Acc Chem Res 41:432–441

    Article  PubMed  CAS  Google Scholar 

  17. Cheng YC, Fleming GR (2009) Dynamics of light harvesting in photosynthesis. Annu Rev Phys Chem 60:241–262

    Article  PubMed  CAS  Google Scholar 

  18. Jonas DM (2003) Two-dimensional femtosecond spectroscopy. Annu Rev Phys Chem 54:425–463

    Article  PubMed  CAS  Google Scholar 

  19. Boxer SG (2009) Stark realities. J Phys Chem B 113:2972–2983

    Article  PubMed  CAS  Google Scholar 

  20. Liptay W (1974) Dipole moments and polarizabilities of molecules in excited electronic states. In: Lim EC (ed) Excited states. Academic, New York, pp 129–229

    Google Scholar 

  21. Stanley RJ (2001) Advances in flavin and flavoprotein optical spectroscopy. Antioxid Redox Signal 3:847–866

    Article  PubMed  CAS  Google Scholar 

  22. Stanley RJ, Jang H (1999) Electronic structure measurements of oxidized flavins and flavin complexes using Stark-effect spectroscopy. J Phys Chem A 103:8976–8984

    Article  CAS  Google Scholar 

  23. Stanley RJ, Siddiqui MS (2001) A Stark spectroscopic study of N(3)-methyl, N(10)-isobutyl-7,8-dimethylisoalloxazine in nonpolar low-temperature glasses: experiment and comparison with calculations. J Phys Chem A 105:11001–11008

    Article  CAS  Google Scholar 

  24. MacFarlane AW IV, Stanley RJ (2001) Evidence of powerful substrate electric fields in DNA photolyase: implications for thymidine dimer repair. Biochemistry 40:15203–15214

    Article  PubMed  CAS  Google Scholar 

  25. Hopkins N, Stanley RJ (2003) Measurement of the electronic properties of the flavoprotein old yellow enzyme (OYE) and the OYE:p-Cl phenol charge-transfer complex using Stark spectroscopy. Biochemistry 42:991–999

    Article  PubMed  CAS  Google Scholar 

  26. Kodali G, Siddiqui SU, Stanley RJ (2009) Charge redistribution in oxidized and semiquinone E. coli DNA photolyase upon photoexcitation: Stark spectroscopy reveals a rationale for the position of Trp382. J Am Chem Soc 131:4795–4807

    Article  PubMed  CAS  Google Scholar 

  27. Hochstrasser RM (1973) Electric field effects on oriented molecules and molecular crystals. Acc Chem Res 6:263–269

    Article  CAS  Google Scholar 

  28. Lao K, Moore LJ, Zhou H, Boxer SG (1995) Higher-order Stark spectroscopy: polarizability of photosynthetic pigments. J Phys Chem 99:496–500

    Article  CAS  Google Scholar 

  29. Bublitz GU, Boxer SG (1997) Stark spectroscopy: applications in chemistry, biology, and materials science. Annu Rev Phys Chem 48:213–242

    Article  PubMed  CAS  Google Scholar 

  30. Liptay W, Wortmann R, Boehm R, Detzer N (1988) Excited state dipole moments and polarizabilities of centrosymmetric and dimeric molecules. II. Polyenes, polyynes and cumulenes. Chem Phys 120:439–448

    Article  CAS  Google Scholar 

  31. Bublitz GU, Ortiz R, Marder SR, Boxer SG (1997) Stark spectroscopy of donor/acceptor substituted polyenes. J Am Chem Soc 119:3365–3376

    Article  CAS  Google Scholar 

  32. Locknar SA, Peteanu LA (1998) Investigation of the relationship between dipolar properties and cis-trans configuration in retinal polyenes: a comparative study using Stark spectroscopy and semiempirical calculations. J Phys Chem B 102:4240–4246

    Article  CAS  Google Scholar 

  33. Mathies R, Stryer L (1976) Retinal has a highly dipolar vertically excited singlet state: implications for vision. Proc Natl Acad Sci U S A 73:2169–2173

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Karki L, Vance FW, Hupp JT, LeCours SM, Therien MJ (1998) Electronic Stark effect studies of a porphyrin-based push-pull chromophore displaying a large first hyperpolarizability: state-specific contributions to beta. J Am Chem Soc 120:2606–2611

    Article  CAS  Google Scholar 

  35. Eaton WA, Hofrichter J, Makinen MW, Andersen RD, Ludwig ML (1975) Optical spectra and electronic structure of flavine mononucleotide in flavodoxin crystals. Biochemistry 14:2146–2151

    Article  PubMed  CAS  Google Scholar 

  36. Siddiqui MSU, Kodali G, Stanley RJ (2008) The electronic transition dipole moment directions of reduced flavin in stretched poly(vinyl alcohol) films. J Phys Chem B 112:119–126

    Article  PubMed  CAS  Google Scholar 

  37. Chowdhury A, Wachsmann-Hogiu S, Bangal PR, Raheem I, Peteanu LA (2001) Characterization of chiral H and J aggregates of cyanine dyes formed by DNA templating using Stark and fluorescence spectroscopies. J Phys Chem B 105:12196–12201

    Article  CAS  Google Scholar 

  38. Barnes J, Bernhard WA (1993) The protonation state of one-electron-reduced cytosine and adenine. 1. Initial protonation sites at low-temperatures in glassy solids. J Phys Chem 97:3401–3408

    Article  CAS  Google Scholar 

  39. Cai ZL, Sevilla MD (2004) Studies of excess electron and hole transfer in DNA at low temperatures. Topics in Current Chemistry, Long-range charge transfer in DNA II 237:103–127

    Google Scholar 

  40. Eisinger J, Gueron M, Schulman RG, Yamane T (1966) Excimer fluorescence of dinucleotides, polynucleotides, and DNA. Proc Natl Acad Sci U S A 55:1015–1020

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Kodali G, Kistler KA, Matsika S, Stanley RJ (2008) 2-Aminopurine excited state electronic structure measured by Stark spectroscopy. J Phys Chem B 112:1789–1795

    Article  PubMed  CAS  Google Scholar 

  42. Kodali G, Kistler KA, Narayanan M, Matsika S, Stanley RJ (2010) Change in electronic structure upon optical excitation of 8-vinyladenosine: an experimental and theoretical study. J Phys Chem A 114:256–267

    Article  PubMed  CAS  Google Scholar 

  43. Kodali G, Narayanan M, Stanley RJ (2012) The excited state electronic properties of 6-methylisoxanthopterin (6-MI): an experimental and theoretical study. J Phys Chem B 116:2981

    Article  PubMed  CAS  Google Scholar 

  44. Andrews SS, Boxer SG (2000) A liquid nitrogen immersion cryostat for optical measurements. Rev Sci Instrum 71:3567–3569

    Article  CAS  Google Scholar 

  45. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1988) Numerical recipes in C: the art of scientific computing. Cambridge University Press, New York

    Google Scholar 

  46. Böttcher CJF (1952) Theory of electric polarization. Elsevier, Houston

    Google Scholar 

  47. Luchowski R, Krawczyk S (2003) Stark effect spectroscopy of exciton states in the dimer of acridine orange. Chem Phys 293:155–166

    Article  CAS  Google Scholar 

  48. Gibson QH, Massey V, Atherton NM (1962) The nature of compounds present in mixtures of oxidized and reduced flavin mononucleotides. Biochem J 85:369–383

    PubMed Central  PubMed  CAS  Google Scholar 

  49. Silverman LN, Spry DB, Boxer SG, Fayer MD (2008) Charge transfer in photoacids observed by Stark spectroscopy. J Phys Chem A 112:10244–10249

    Article  PubMed  CAS  Google Scholar 

  50. Andrews SS, Boxer SG (2000) Vibrational Stark effects of nitriles I. Methods and experimental results. J Phys Chem A 104: 11853–11863

    Article  CAS  Google Scholar 

  51. Hopkins N, Williams CH Jr (1995) Lipoamide dehydrogenase from Escherichia coli lacking the redox active disulfide: C44S and C49S. Redox properties of the FAD and interactions with pyridine nucleotides. Biochemistry 34: 11766–11776

    Article  PubMed  CAS  Google Scholar 

  52. Hopkins N, Williams CH Jr (1995) Characterization of lipoamide dehydrogenase from Escherichia coli lacking the redox active disulfide: C44S and C49S. Biochemistry 34: 11757–11765

    Article  PubMed  CAS  Google Scholar 

  53. Krauth-Siegel RL, Lohrer H, Hungerer KD, Schoellhammer T (1991) Lipoamide dehydrogenase and trypanothione reductase from Trypanosoma cruzi, the causative agent of Chagas’ disease. In: Flavins Flavoproteins Proc. Int. Symp., 10th, pp 843–846

    Google Scholar 

  54. Williams CH Jr (1992) Lipoamide dehydrogenase, glutathione reductase, thioredoxin reductase, and mercuric ion reductase. A family of flavoenzyme transhydrogenases. Chem Biochem Flavoenzymes 3:121–211

    CAS  Google Scholar 

  55. Karplus PA, Schulz GE (1987) Refined structure of glutathione-reductase at 1.54 A resolution. J Mol Biol 195:701–729

    Article  PubMed  CAS  Google Scholar 

  56. Kodali G (2009) Excited state electronic properties of DNA photolyase and fluorescent nucleobase analogues (FBA): An experimental and theoretical study. UMI Dissertation Publishing 1–266

    Google Scholar 

Download references

Acknowledgements

Dr. Goutham Kodali gave very useful feedback on this manuscript. We wish to thank Dr. Ron Koder for the TPARF and Dr. Nancy Hopkins for the lipoamide dehydrogenase enzyme. R.P. and R.J.S. were supported by a grant from the NSF Division of Chemistry (CHE-0847855). R.J.S. is grateful for support from the NSF Molecular Biosciences Division (MCB-0347087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Stanley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pauszek, R.F., Stanley, R.J. (2014). A “How-To” Guide to the Stark Spectroscopy of Flavins and Flavoproteins. In: Weber, S., Schleicher, E. (eds) Flavins and Flavoproteins. Methods in Molecular Biology, vol 1146. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0452-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0452-5_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0451-8

  • Online ISBN: 978-1-4939-0452-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics