From Genes to Markers: Exploiting Gene Sequence Information to Develop Tools for Plant Breeding

  • Melissa GarciaEmail author
  • Diane E. Mather
Part of the Methods in Molecular Biology book series (MIMB, volume 1145)


Once the sequence is known for a gene of interest, it is usually possible to design markers to detect polymorphisms within the gene. Such markers can be particularly useful in plant breeding, especially if they detect the causal polymorphism within the gene and are diagnostic of the phenotype. In this chapter, we (1) discuss how gene sequences are obtained and aligned and how polymorphic sites can be identified or predicted; (2) explain the principles of PCR primer design and PCR amplification and provide guidelines for their application in the design and testing of markers; (3) discuss detection methods for presence/absence (dominant) polymorphisms, length polymorphisms and single nucleotide polymorphisms (SNPs); and (4) outline some of the factors that affect the utility of markers in plant breeding and explain how markers can be evaluated (validated) for use in plant breeding.

Key words

Molecular markers Plant breeding Marker-assisted selection Functional markers 


  1. 1.
    Ganal MW, Altmann T, Röder MS (2009) SNP identification in crop plants. Curr Opin Plant Biol 12:211–217PubMedCrossRefGoogle Scholar
  2. 2.
    Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100PubMedCrossRefGoogle Scholar
  3. 3.
    Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedCrossRefGoogle Scholar
  4. 4.
    Botstein D, White RL, Skolnick M et al (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331PubMedCentralPubMedGoogle Scholar
  5. 5.
    Tanksley SD, Young ND, Paterson AH et al (1989) RFLP mapping in plant breeding: new tools for an old science. Nature 7:257–264Google Scholar
  6. 6.
    Powell W, Morgante M, Andre C et al (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238CrossRefGoogle Scholar
  7. 7.
    Konieczny F, Ausubel A (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 4:403–410PubMedCrossRefGoogle Scholar
  8. 8.
    Baumbusch LO, Sundal INAK, Hughes DW et al (2001) Efficient protocols for CAPS-based mapping in Arabidopsis. Plant Mol Biol Rep 19:137–149CrossRefGoogle Scholar
  9. 9.
    Agarwal M, Shrivastava N, Padh H (2008) Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep 27:617–631PubMedCrossRefGoogle Scholar
  10. 10.
    Holland JB, Helland SJ, Sharopova N et al (2001) Polymorphism of PCR-based markers targeting exons, introns, promoter regions, and SSRs in maize and introns and repeat sequences in oat. Genome 44:1065–1076PubMedCrossRefGoogle Scholar
  11. 11.
    Salamov AA, Solovyev VV (2000) Ab initio gene finding in Drosophila genomic DNA. Genome Res 10:516–522PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Tautz D, Renz M (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12:4127–4138PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Litt M, Luty JA (1989) A hypervariable microsatellite revealed by in vitro amplification of dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 44:398–401Google Scholar
  14. 14.
    Li Y-C, Korol AB, Fahima T et al (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453–2465PubMedCrossRefGoogle Scholar
  15. 15.
    Kofler R, Schlötterer C, Lelley T (2007) SciRoKo: a new tool for whole genome microsatellite search and investigation. Bioinformatics 23:1683–1685PubMedCrossRefGoogle Scholar
  16. 16.
    Temnykh S, DeClerck G, Lukashova A et al (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341PubMedCrossRefGoogle Scholar
  18. 18.
    Paux E, Faure S, Choulet F et al (2010) Insertion site-based polymorphism markers open new perspectives for genome saturation and marker-assisted selection in wheat. Plant Biotechnol J 8:196–210PubMedCrossRefGoogle Scholar
  19. 19.
    Larkin HD, Blackshields MA, Brown G et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948PubMedCrossRefGoogle Scholar
  20. 20.
    Katoh M, Kuma M (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Marth GT, Korf I, Yandell MD et al (1999) A general approach to single-nucleotide polymorphism discovery. Nat Genet 23:452–456PubMedCrossRefGoogle Scholar
  22. 22.
    Barker G, Batley J, O’ Sullivan H et al (2003) Redundancy based detection of sequence polymorphisms in expressed sequence tag data using autoSNP. Bioinformatics 19:421–422PubMedCrossRefGoogle Scholar
  23. 23.
    Apte A, Daniel S (2009) PCR primer design. Cold Spring Harb Protoc. doi: 10.1101/pdb.ip65 PubMedGoogle Scholar
  24. 24.
    Dieffenbach GS, Dveksler CW (1995) PCR primer: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  25. 25.
    Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291PubMedCrossRefGoogle Scholar
  26. 26.
    Untergasser LJ, Nijveen A, Rao H et al (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35:W71–W74PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, NJ, pp 365–386Google Scholar
  28. 28.
    Saiki RK, Gelfand DH, Stoffel S et al (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491PubMedCrossRefGoogle Scholar
  29. 29.
    Chien A, Edgar DB, Trela JM (1976) Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol 127:1550–1557PubMedCentralPubMedGoogle Scholar
  30. 30.
    Kolmodin LA, Birch DE (2002) Polymerase chain reaction: basic principles and routine practice. In: Chen BY, Janes HW (eds) PCR cloning protocols. Humana Press, Totowa, NJ, pp 3–18CrossRefGoogle Scholar
  31. 31.
    Eckert KA, Kunkel TA (1991) DNA polymerase fidelity and the polymerase chain reaction. PCR Methods Appl 1:17–24PubMedCrossRefGoogle Scholar
  32. 32.
    Tindall KR, Kunkel TA (1988) Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase. Biochemistry 27:6008–6013PubMedCrossRefGoogle Scholar
  33. 33.
    Don RH, Cox PT, Wainwright BJ et al (1991) “Touchdown” PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res 19:4008PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Henegariu O, Heerema NA, Dlouhy SR et al (1997) Multiplex PCR : critical parameters and step-by-step protocol. Biotechniques 23: 504–511PubMedGoogle Scholar
  35. 35.
    Hayden MJ, Nguyen TM, Waterman A et al (2007) Application of multiplex-ready PCR for fluorescence-based SSR genotyping in barley and wheat. Mol Breed 21:271–281CrossRefGoogle Scholar
  36. 36.
    Wittwer CT, Reed GH, Gundry CN et al (2003) High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 49:853–860PubMedCrossRefGoogle Scholar
  37. 37.
    Herrmann H, Durtschi J, Wittwer C et al (2007) Expanded instrument comparison of amplicon DNA melting analysis for mutation scanning and genotyping. Clin Chem 53: 1544–1548PubMedCrossRefGoogle Scholar
  38. 38.
    Tabone T, Mather DE, Hayden MJ (2009) Temperature switch PCR (TSP): Robust assay design for reliable amplification and genotyping of SNPs. BMC Genomics 10:580PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Studer B, Jensen LB, Fiil A et al (2009) “Blind” mapping of genic DNA sequence polymorphisms in Lolium perenne L. by high resolution melting curve analysis. Mol Breed 24: 191–199CrossRefGoogle Scholar
  40. 40.
    Dong C, Vincent K, Sharp P (2009) Simultaneous mutation detection of three homoeologous genes in wheat by High Resolution Melting analysis and Mutation Surveyor®. BMC Plant Biol 9:143PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Lee LG, Connell CR, Bloch W et al (1993) Allelic discrimination by nick-translation PCR with fluorogenic probes. Nucleic Acids Res 21: 3761–3766PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Holland PM, Abramson RD, Watson R et al (1991) Detection of specific polymerase chain reaction product by utilizing the 5′→3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A 88: 7276–7280PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Bagge M, Lübberstedt T (2008) Functional markers in wheat: technical and economic aspects. Mol Breed 22:319–328CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Australian Centre for Plant Functional GenomicsSchool of Agriculture, Food and Wine, Waite Research Institute, University of AdelaideGlen OsmondAustralia
  2. 2.School of Agriculture, Food and Wine, Waite Research Institute, University of AdelaideGlen OsmondAustralia

Personalised recommendations