Advertisement

DNA Vaccines pp 131-140 | Cite as

Intradermal Vaccination by DNA Tattooing

  • Joost H. van den Berg
  • Koen Oosterhuis
  • Ton N. M. Schumacher
  • John B. A. G. Haanen
  • Adriaan D. BinsEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1143)

Abstract

DNA vaccination is an attractive vaccination method. First, the production of plasmid DNA as a vaccine is considerably more cheap and simple than the production of recombinant protein. Second, the expression cassette of DNA vaccines can readily be modified, making DNA vaccines highly flexible. Finally, in animal models, DNA vaccination is able to induce potent cellular immune responses.

Over the past decade, the focus in the DNA vaccination field has in large part moved from intramuscular immunization towards dermal administration. As a natural “porte d’entrée” for pathogens, the skin is rich in antigen-presenting cells, which are required for generating an efficient antigen-specific immune response.

This chapter describes a DNA vaccination protocol that utilizes a simple tattooing device for the dermal delivery of plasmid DNA. This technique, called DNA tattooing, is capable of generating high frequencies of antigen-reactive T cells in mice and macaques.

Key words

DNA vaccination Tattooing Intradermal delivery Immune response Plasmid DNA 

References

  1. 1.
    Nagata T, Aoshi T, Uchijima M et al (2004) Cytotoxic T-lymphocyte-, and helper T-lymphocyte-oriented DNA vaccination. DNA Cell Biol 23:93–106PubMedCrossRefGoogle Scholar
  2. 2.
    van Rooij N, van Buuren MM, Philips D et al (2013) Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J Clin Oncol 31:e439PubMedCrossRefGoogle Scholar
  3. 3.
    Lu YC, Yao X, Li YF et al (2013) Mutated PPP1R3B is recognized by T cells used to treat a melanoma patient who experienced a durable complete tumor regression. J Immunol 190:6034–6042PubMedCrossRefGoogle Scholar
  4. 4.
    Kanitakis J (2002) Anatomy, histology and immunohistochemistry of normal human skin. Eur J Dermatol 12:390–399PubMedGoogle Scholar
  5. 5.
    Kataru RP, Jung K, Jang C et al (2009) Critical role of CD11b+ macrophages and VEGF in inflammatory lymphangiogenesis, antigen clearance, and inflammation resolution. Blood 113:5650–5659PubMedCrossRefGoogle Scholar
  6. 6.
    Shklovskaya E, Roediger B, Fazekas de St GB (2008) Epidermal and dermal dendritic cells display differential activation and migratory behavior while sharing the ability to stimulate CD4+ T cell proliferation in vivo. J Immunol 181:418–430PubMedCrossRefGoogle Scholar
  7. 7.
    Stoecklinger A, Grieshuber I, Scheiblhofer S et al (2007) Epidermal langerhans cells are dispensable for humoral and cell-mediated immunity elicited by gene gun immunization. J Immunol 179:886–893PubMedCrossRefGoogle Scholar
  8. 8.
    Stoitzner P, Tripp CH, Eberhart A et al (2006) Langerhans cells cross-present antigen derived from skin. Proc Natl Acad Sci U S A 103:7783–7788PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Liard C, Munier S, Joulin-Giet A et al (2012) Intradermal immunization triggers epidermal Langerhans cell mobilization required for CD8 T-cell immune responses. J Invest Dermatol 132:615–625PubMedCrossRefGoogle Scholar
  10. 10.
    Bins AD, Wolkers MC, van den Boom MD et al (2007) In vivo antigen stability affects DNA vaccine immunogenicity. J Immunol 179:2126–2133PubMedCrossRefGoogle Scholar
  11. 11.
    Kis EE, Winter G, Myschik J (2012) Devices for intradermal vaccination. Vaccine 30:523–538PubMedCrossRefGoogle Scholar
  12. 12.
    Bins AD, Jorritsma A, Wolkers MC et al (2005) A rapid and potent DNA vaccination strategy defined by in vivo monitoring of antigen expression. Nat Med 11:899–904PubMedCrossRefGoogle Scholar
  13. 13.
    van den Berg JH, Nujien B, Beijnen JH et al (2009) Optimization of intradermal vaccination by DNA tattooing in human skin. Hum Gene Ther 20:181–189PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Wolkers MC, Toebes M, Okabe M et al (2002) Optimizing the efficacy of epitope-directed DNA vaccination. J Immunol 168:4998–5004PubMedCrossRefGoogle Scholar
  15. 15.
    Oosterhuis K, Aleyd E, Vrijland K et al (2012) Rational design of DNA vaccines for the induction of human papillomavirus type 16 E6- and E7-specific cytotoxic T-cell responses. Hum Gene Ther 23:1301–1312PubMedCrossRefGoogle Scholar
  16. 16.
    van den Berg JH, Quaak SG, Beijnen JH et al (2010) Lipopolysaccharide contamination in intradermal DNA vaccination: toxic impurity or adjuvant? Int J Pharm 390:32–36PubMedCrossRefGoogle Scholar
  17. 17.
    Toebes M, Rodenko B, Ovaa H et al (2009) Generation of peptide MHC class I monomers and multimers through ligand exchange. Curr Protoc Immunol 87:18.16.1–18.16.20Google Scholar
  18. 18.
    Bins AD, van Rheenen J, Jalink K et al (2007) Intravital imaging of fluorescent markers and FRET probes by DNA tattooing. BMC Biotechnol 7:2PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Oosterhuis K, Ohlschlager P, van den Berg JH et al (2011) Preclinical development of highly effective and safe DNA vaccines directed against HPV 16 E6 and E7. Int J Cancer 129:397–406PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Joost H. van den Berg
    • 1
  • Koen Oosterhuis
    • 1
  • Ton N. M. Schumacher
    • 1
  • John B. A. G. Haanen
    • 1
  • Adriaan D. Bins
    • 1
    Email author
  1. 1.Division of ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands

Personalised recommendations