Advertisement

Microfluidic-Based Manufacture of siRNA-Lipid Nanoparticles for Therapeutic Applications

  • Colin Walsh
  • Kevin Ou
  • Nathan M. Belliveau
  • Tim J. Leaver
  • Andre W. Wild
  • Jens Huft
  • Paulo J. Lin
  • Sam Chen
  • Alex K. Leung
  • Justin B. Lee
  • Carl L. Hansen
  • Robert J. Taylor
  • Euan C. Ramsay
  • Pieter R. Cullis
Part of the Methods in Molecular Biology book series (MIMB, volume 1141)

Abstract

A simple, efficient, and scalable manufacturing technique is required for developing siRNA-lipid nanoparticles (siRNA-LNP) for therapeutic applications. In this chapter we describe a novel microfluidic-based manufacturing process for the rapid manufacture of siRNA-LNP, together with protocols for characterizing the size, polydispersity, RNA encapsulation efficiency, RNA concentration, and total lipid concentration of the resultant nanoparticles.

Key words

Lipid nanoparticle Microfluidics siRNA Nanoparticle manufacture Solid-core LNP siRNA-LNP NanoAssemblr Nanoparticle formulation 

Notes

Acknowledgements

This work was supported by the National Science and Engineering Research Council of Canada (F09-04486), Canadian Institutes for Health Research (111627), and Genome British Columbia.

References

  1. 1.
    Mozafari MR (2005) Liposomes: an overview of manufacturing techniques. Cell Mol Biol Lett 10:711–719Google Scholar
  2. 2.
    Schwendener RA, Schott H (2010) Liposome formulations of hydrophobic drugs. In: Weissig V (ed) Liposomes methods and protocols, 2nd edn. Humana Press, Totowa, NJ, pp 129–138CrossRefGoogle Scholar
  3. 3.
    Mozafari MR (2010) Nanoliposomes: preparation and analysis. In: Weissig V (ed) Liposomes methods and protocols, 2nd edn. Humana Press, Totowa, NJ, pp 29–50CrossRefGoogle Scholar
  4. 4.
    Chatterjee S, Banerjee DL (2002) Preparation, isolation, and characterization of liposomes containing natural and synthetic lipids. In: Basu SC, Basu M (eds) Liposome methods and protocols, 1st edn. Humana Press Totowa, NJ, pp 3–16CrossRefGoogle Scholar
  5. 5.
    Semple SC, Klimuk SK, Harasym TO et al (2001) Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures. Biochim Biophys Acta 1510:152–166CrossRefGoogle Scholar
  6. 6.
    Belliveau NM, Huft J, Lin PJ et al (2012) Generation and loading of lipid nanoparticles containing siRNA by microfluidic mixing. Mol Ther Nucleic Acids 1:e37CrossRefGoogle Scholar
  7. 7.
    DeMello AJ (2006) Control and detection of chemical reactions in microfluidic systems. Nature 442:394–402CrossRefGoogle Scholar
  8. 8.
    Jahn A, Vreeland WN, DeVoe DL et al (2007) Microfluidic directed formation of liposomes of controlled size. Langmuir 23:6289–6293CrossRefGoogle Scholar
  9. 9.
    Song H, Chen DL, Ismagilov RF (2006) Reactions in droplets in microfluidic channels. Angew Chem Int Ed Engl 45:7336–7356CrossRefGoogle Scholar
  10. 10.
    Song Y, Hormes J, Kumar CS (2008) Microfluidic synthesis of nanomaterials. Small 4:698–711CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • Colin Walsh
    • 1
  • Kevin Ou
    • 1
  • Nathan M. Belliveau
    • 2
  • Tim J. Leaver
    • 2
  • Andre W. Wild
    • 1
  • Jens Huft
    • 1
  • Paulo J. Lin
    • 3
  • Sam Chen
    • 3
  • Alex K. Leung
    • 3
  • Justin B. Lee
    • 3
  • Carl L. Hansen
    • 3
    • 4
  • Robert J. Taylor
    • 4
  • Euan C. Ramsay
    • 3
    • 4
  • Pieter R. Cullis
    • 3
    • 4
  1. 1.University of British ColumbiaVancouverCanada
  2. 2.Precision NanoSystems Inc.VancouverCanada
  3. 3.University of British Columbia, VancouverVancouverCanada
  4. 4.Precision NanoSystems Inc., VancouverVancouverCanada

Personalised recommendations