Advertisement

A Method for Screening Mitochondrial Fusogenic Envelopes for Use in Mitochondrial Drug Delivery

  • Yuma Yamada
  • Hideyoshi Harashima
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1141)

Abstract

Various types of mitochondrial dysfunctions have been implicated in a variety of human diseases. This suggests that mitochondria would be promising therapeutic drug targets and mitochondrial therapy would be expected to be useful for the treatment of various diseases. We have already reported the development of a MITO-Porter, a liposome-based nano-carrier that delivers its cargo to mitochondria via a membrane-fusion mechanism. In our strategy for delivering cargos to mitochondria using a MITO-Porter, the carriers must fuse with the organelle membrane. Here we report on methodology for screening various types of lipid envelopes that have the potential for fusing with a mitochondrial membrane. The method involves monitoring the cancellation of fluorescence resonance energy transfer (FRET) and evaluating membrane fusion between the carriers and mitochondria in living cells by FRET analysis using a spectral imaging fluorescent microscopy system.

Key words

Mitochondria Mitochondrial drug delivery Mitochondrial macromolecule delivery MITO-Porter Membrane fusion Mitochondrial gene therapy Mitochondrial medicine Octaarginine 

Notes

Acknowledgements

This work was supported, in part, by the Grant-in-Aid for Young Scientists (A) and Grant-in-Aid for Challenging Exploratory Research from the Ministry of Education, Culture, Sports, Science and Technology of Japanese Government (MEXT). We also thank Dr. Milton Feather for his helpful advice in writing the manuscript.

References

  1. 1.
    Flierl A, Jackson C, Cottrell B, Murdock D, Seibel P, Wallace DC (2003) Targeted delivery of DNA to the mitochondrial compartment via import sequence-conjugated peptide nucleic acid. Mol Ther 7:550–557CrossRefGoogle Scholar
  2. 2.
    Vestweber D, Schatz G (1989) DNA-protein conjugates can enter mitochondria via the protein import pathway. Nature 338:170–172CrossRefGoogle Scholar
  3. 3.
    Schatz G (1987) 17th Sir Hans Krebs lecture. Signals guiding proteins to their correct locations in mitochondria. Eur J Biochem 165:1–6CrossRefGoogle Scholar
  4. 4.
    Seibel M, Bachmann C, Schmiedel J, Wilken N, Wilde F, Reichmann H, Isaya G, Seibel P, Pfeiler D (1999) Processing of artificial peptide-DNA-conjugates by the mitochondrial intermediate peptidase (MIP). Biol Chem 380:961–967CrossRefGoogle Scholar
  5. 5.
    Endo T, Nakayama Y, Nakai M (1995) Avidin fusion protein as a tool to generate a stable translocation intermediate spanning the mitochondrial membranes. J Biochem 118:753–759Google Scholar
  6. 6.
    Wiedemann N, Frazier AE, Pfanner N (2004) The protein import machinery of mitochondria. J Biol Chem 279:14473–14476CrossRefGoogle Scholar
  7. 7.
    Yamada Y, Akita H, Kamiya H, Kogure K, Yamamoto T, Shinohara Y, Yamashita K, Kobayashi H, Kikuchi H, Harashima H (2008) MITO-Porter: a liposome-based carrier system for delivery of macromolecules into mitochondria via membrane fusion. Biochim Biophys Acta 1778:423–432CrossRefGoogle Scholar
  8. 8.
    Yamada Y, Harashima H (2008) Mitochondrial drug delivery systems for macromolecule and their therapeutic application to mitochondrial diseases. Adv Drug Deliv Rev 60:1439–1462CrossRefGoogle Scholar
  9. 9.
    Kogure K, Akita H, Yamada Y, Harashima H (2008) Multifunctional envelope-type nano device (MEND) as a non-viral gene delivery system. Adv Drug Deliv Rev 60:559–571CrossRefGoogle Scholar
  10. 10.
    Khalil IA, Kogure K, Futaki S, Harashima H (2006) High density of octaarginine stimulates macropinocytosis leading to efficient intracellular trafficking for gene expression. J Biol Chem 281:3544–3551CrossRefGoogle Scholar
  11. 11.
    Del Gaizo V, Payne RM (2003) A novel TAT-mitochondrial signal sequence fusion protein is processed, stays in mitochondria, and crosses the placenta. Mol Ther 7:720–730CrossRefGoogle Scholar
  12. 12.
    Khalil IA, Kogure K, Futaki S, Hama S, Akita H, Ueno M, Kishida H, Kudoh M, Mishina Y, Kataoka K et al (2007) Octaarginine-modified multifunctional envelope-type nanoparticles for gene delivery. Gene Ther 14:682–689CrossRefGoogle Scholar
  13. 13.
    Struck DK, Hoekstra D, Pagano RE (1981) Use of resonance energy transfer to monitor membrane fusion. Biochemistry 20:4093–4099CrossRefGoogle Scholar
  14. 14.
    Maier O, Oberle V, Hoekstra D (2002) Fluorescent lipid probes: some properties and applications (a review). Chem Phys Lipids 116:3–18CrossRefGoogle Scholar
  15. 15.
    Akita H, Kudo A, Minoura A, Yamaguti M, Khalil IA, Moriguchi R, Masuda T, Danev R, Nagayama K, Kogure K et al (2009) Multi-layered nanoparticles for penetrating the endosome and nuclear membrane via a step-wise membrane fusion process. Biomaterials 30:2940–2949CrossRefGoogle Scholar
  16. 16.
    Yamada Y, Akita H, Harashima H (2012) Multifunctional envelope-type nano device (MEND) for organelle targeting via a stepwise membrane fusion process. Methods Enzymol 509:301–326CrossRefGoogle Scholar
  17. 17.
    Haraguchi T, Shimi T, Koujin T, Hashiguchi N, Hiraoka Y (2002) Spectral imaging fluorescence microscopy. Genes Cells 7:881–887CrossRefGoogle Scholar
  18. 18.
    Futaki S, Ohashi W, Suzuki T, Niwa M, Tanaka S, Ueda K, Harashima H, Sugiura Y (2001) Stearylated arginine-rich peptides: a new class of transfection systems. Bioconjug Chem 12:1005–1011CrossRefGoogle Scholar
  19. 19.
    Shinohara Y, Almofti MR, Yamamoto T, Ishida T, Kita F, Kanzaki H, Ohnishi M, Yamashita K, Shimizu S, Terada H (2002) Permeability transition-independent release of mitochondrial cytochrome c induced by valinomycin. Eur J Biochem 269:5224–5230CrossRefGoogle Scholar
  20. 20.
    Shinohara Y, Sagawa I, Ichihara J, Yamamoto K, Terao K, Terada H (1997) Source of ATP for hexokinase-catalyzed glucose phosphorylation in tumor cells: dependence on the rate of oxidative phosphorylation relative to that of extramitochondrial ATP generation. Biochim Biophys Acta 1319:319–330CrossRefGoogle Scholar
  21. 21.
    Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887CrossRefGoogle Scholar
  22. 22.
    Yamada Y, Harashima H (2012) Targeting mitochondria: innovation from mitochondrial drug delivery system (DDS) to mitochondrial medicine. Yakugaku Zasshi 132:1111–1118CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • Yuma Yamada
    • 1
  • Hideyoshi Harashima
    • 1
  1. 1.Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical SciencesHokkaido UniversitySapporoJapan

Personalised recommendations