Skip to main content

General In Vitro Caspase Assay Procedures

  • Protocol
  • First Online:
Caspases,Paracaspases, and Metacaspases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1133))

Abstract

One of the most valuable tools that have been developed for the study of apoptosis is the availability of recombinant active caspases. The determination of caspase substrate preference, the design of sensitive substrates and potent inhibitors, the resolution of caspase structures, the elucidation of their activation mechanisms, and the identification of their substrates were made possible by the availability of sufficient amounts of enzymatically pure caspases. The current chapter describes at length the expression, purification, and basic enzymatic characterization of apoptotic caspases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cerretti DP et al (1992) Molecular cloning of the interleukin-1β converting enzyme. Science 256:97–100

    Article  CAS  PubMed  Google Scholar 

  2. Thornberry NA et al (1992) A novel heterodimeric cysteine protease is required for interleukin-1beta processing in monocytes. Nature 356:768–774

    Article  CAS  PubMed  Google Scholar 

  3. Yi CH, Yuan J (2009) The Jekyll and Hyde functions of caspases. Dev Cell 16:21–34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Thornberry NA et al (1997) A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 272:17907–17911

    Article  CAS  PubMed  Google Scholar 

  5. Stennicke HR, Renatus M, Meldal M, Salvesen GS (2000) Internally quenched fluorescent peptide substrates disclose the subsite preferences of human caspases 1, 3, 6, 7 and 8. Biochem J 350:563–568

    Article  CAS  PubMed  Google Scholar 

  6. Lavrik IN, Golks A, Krammer PH (2005) Caspases: pharmacological manipulation of cell death. J Clin Invest 115:2665–2672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Garcia-Calvo M et al (1998) Inhibition of human caspases by peptide-based and macromolecular inhibitors. J Biol Chem 273:32608–32613

    Article  CAS  PubMed  Google Scholar 

  8. Fuentes-Prior P, Salvesen GS (2004) The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J 384:201–232

    Article  CAS  PubMed  Google Scholar 

  9. Agard NJ, Wells JA (2009) Methods for the proteomic identification of protease substrates. Curr Opin Chem Biol 13:503–509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Demon D et al (2009) Caspase substrates: easily caught in deep waters? Trends Biotechnol 27:680–688

    Article  CAS  PubMed  Google Scholar 

  11. Luthi AU, Martin SJ (2007) The CASBAH: a searchable database of caspase substrates. Cell Death Differ 14:641–650

    Article  CAS  PubMed  Google Scholar 

  12. Igarashi Y et al (2007) CutDB: a proteolytic event database. Nucleic Acids Res 35:D546–D549

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Timmer JC et al (2009) Structural and kinetic determinants of protease substrates. Nat Struct Mol Biol 16:1101–1108

    Article  CAS  PubMed  Google Scholar 

  14. Muppidi JR et al (2006) Homotypic FADD interactions through a conserved RXDLL motif are required for death receptor-induced apoptosis. Cell Death Differ 13:1641–1650

    Article  CAS  PubMed  Google Scholar 

  15. Bouchier-Hayes L et al (2009) Characterization of cytoplasmic caspase-2 activation by induced proximity. Mol cell 35:830–840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Vegran F, Boidot R, Solary E, Lizard-Nacol S (2011) A short caspase-3 isoform inhibits chemotherapy-induced apoptosis by blocking apoptosome assembly. PLoS One 6:e29058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Kamada S, Kikkawa U, Tsujimoto Y, Hunter T (2005) Nuclear translocation of caspase-3 is dependent on its proteolytic activation and recognition of a substrate-like protein(s). J Biol Chem 280:857–860

    Article  CAS  PubMed  Google Scholar 

  18. Beaudouin J, Liesche C, Aschenbrenner S, Horner M, Eils R (2013) Caspase-8 cleaves its substrates from the plasma membrane upon CD95-induced apoptosis. Cell Death Differ 20:599–610

    Article  CAS  PubMed  Google Scholar 

  19. Arakawa T et al (2007) Suppression of protein interactions by arginine: a proposed mechanism of the arginine effects. Biophys Chem 127:1–8

    Article  CAS  PubMed  Google Scholar 

  20. Baynes BM, Wang DI, Trout BL (2005) Role of arginine in the stabilization of proteins against aggregation. Biochemistry 44:4919–4925

    Article  CAS  PubMed  Google Scholar 

  21. Arakawa T, Tsumoto K (2003) The effects of arginine on refolding of aggregated proteins: not facilitate refolding, but suppress aggregation. Biochem Biophys Res Commun 304:148–152

    Article  CAS  PubMed  Google Scholar 

  22. Reddy KR, Lilie H, Rudolph R, Lange C (2005) L-Arginine increases the solubility of unfolded species of hen egg white lysozyme. Protein Sci 14:929–935

    Article  Google Scholar 

  23. McStay GP, Salvesen GS, Green DR (2008) Overlapping cleavage motif selectivity of caspases: implications for analysis of apoptotic pathways. Cell Death Differ 15:322–331

    Article  CAS  PubMed  Google Scholar 

  24. Schecter I, Berger M (1967) On the size of the active site in proteases. Biochem Biophys Res Commun 27:157–162

    Article  Google Scholar 

  25. Talanian RV et al (1997) Substrate specificities of caspase family proteases. J Biol Chem 272:9677–9682

    Article  CAS  PubMed  Google Scholar 

  26. Mace PD, Riedl SJ (2010) Molecular cell death platforms and assemblies. Curr Opin Cell Biol 22:828–836

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Renatus M, Stennicke HR, Scott FL, Liddington RC, Salvesen GS (2001) Dimer formation drives the activation of the cell death protease caspase 9. Proc Natl Acad Sci U S A 98:14250–14255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Baliga BC, Read SH, Kumar S (2004) The biochemical mechanism of caspase-2 activation. Cell Death Differ 11:1234–1241

    Article  CAS  PubMed  Google Scholar 

  29. Wachmann K et al (2010) Activation and specificity of human caspase-10. Biochemistry 49:8307–8315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Boatright KM et al (2003) A unified model for apical caspase activation. Mol Cell 11:529–541

    Article  CAS  PubMed  Google Scholar 

  31. Pop C, Timmer J, Sperandio S, Salvesen GS (2006) The apoptosome activates caspase-9 by dimerization. Mol Cell 22:269–275

    Article  CAS  PubMed  Google Scholar 

  32. Boucher D, Blais V, Denault JB (2012) Caspase-7 uses an exosite to promote poly(ADP ribose) polymerase 1 proteolysis. Proc Natl Acad Sci U S A 109:5669–5674

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Janicke RU, Sprengart ML, Wati MR, Porter AG (1998) Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 273:9357–9360

    Article  CAS  PubMed  Google Scholar 

  34. Soule HD, Vazguez J, Long A, Albert S, Brennan M (1973) A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst 51:1409–1416

    CAS  PubMed  Google Scholar 

  35. Denault JB et al (2006) Engineered hybrid dimers: tracking the activation pathway of caspase-7. Mol Cell 23:523–533

    Article  CAS  PubMed  Google Scholar 

  36. Pop C et al (2011) FLIPL induces caspase 8 activity in the absence of interdomain caspase 8 cleavage and alters substrate specificity. Biochem J 433:447–457

    Article  CAS  PubMed  Google Scholar 

  37. Stennicke HR et al (1999) Caspase-9 can be activated without proteolytic processing. J Biol Chem 274:8359–8362

    Article  CAS  PubMed  Google Scholar 

  38. Boucher D, Blais V, Drag M, Denault JB (2011) Molecular determinants involved in activation of caspase 7. Biosci Rep 31:283–294

    Article  CAS  PubMed  Google Scholar 

  39. Araya R, Takahashi R, Nomura Y (2002) Yeast two-hybrid screening using constitutive-active caspase-7 as bait in the identification of PA28gamma as an effector caspase substrate. Cell Death Differ 9:322–328

    Article  CAS  PubMed  Google Scholar 

  40. Stennicke HR, Salvesen GS (1999) Catalytic properties of the caspases. Cell Death Differ 6:1054–1059

    Article  CAS  PubMed  Google Scholar 

  41. Pop C, Fitzgerald P, Green DR, Salvesen GS (2007) Role of proteolysis in caspase-8 activation and stabilization. Biochemistry 46:4398–4407

    Article  CAS  PubMed  Google Scholar 

  42. Zhou Q, Salvesen GS (1997) Activation of pro-caspase-7 by serine proteases includes a non-canonical specificity. Biochem J 324:361–364

    CAS  PubMed  Google Scholar 

  43. Stennicke HR et al (1998) Pro-caspase-3 is a major physiologic target of caspase-8. J Biol Chem 273:27084–27090

    Article  CAS  PubMed  Google Scholar 

  44. Chao Y et al (2005) Engineering a dimeric caspase-9: a re-evaluation of the induced proximity model for caspase activation. PLoS Biol 3:e183

    Article  PubMed Central  PubMed  Google Scholar 

  45. Walters J et al (2009) A constitutively active and uninhibitable caspase-3 zymogen efficiently induces apoptosis. Biochem J 424:335–345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Swan ID (1972) The inhibition of hen egg-white lysozyme by imidazole and indole derivatives. J Mol Biol 65:59–62

    Article  CAS  PubMed  Google Scholar 

  47. Bury A (1981) Analysis of protein and peptide mixtures: evaluation of three sodium dodecyl sulphate-polyacrylamide gel electrophoresis buffer systems. J Chromatogr 213:491–500

    Article  CAS  Google Scholar 

  48. Edelhoch H (1967) Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 6:1948–1954

    Article  CAS  PubMed  Google Scholar 

  49. Zhou Q, Salvesen GS (2000) Viral caspase inhibitors CrmA and p35. Methods Enzymol 322:143–154

    Article  CAS  PubMed  Google Scholar 

  50. Zhou Q et al (1998) Interaction of the baculovirus anti-apoptotic protein p35 with caspases: specificity, kinetics, and characterization of the caspase/p35 complex. Biochemistry 37:10757–10765

    Article  CAS  PubMed  Google Scholar 

  51. Oberst A et al (2011) Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471:363–367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Oberst A et al (2010) Inducible dimerization and inducible cleavage reveal a requirement for both processes in caspase-8 activation. J Biol Chem 285:16632–16642

    Article  CAS  PubMed  Google Scholar 

  53. van Raam BJ, Ehrnhoefer DE, Hayden MR, Salvesen GS (2013) Intrinsic cleavage of receptor-interacting protein kinase-1 by caspase-6. Cell Death Differ 20:86–96

    Article  PubMed  Google Scholar 

  54. Gray DC, Mahrus S, Wells JA (2010) Activation of specific apoptotic caspases with an engineered small-molecule-activated protease. Cell 142:637–646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Witkowski WA, Hardy JA (2009) L2′ loop is critical for caspase-7 active site formation. Protein Sci 18:1459–1468

    Article  CAS  PubMed  Google Scholar 

  56. Witkowski WA, Hardy JA (2011) A designed redox-controlled caspase. Proc Natl Acad Sci U S A 20(8):1421–1431

    CAS  Google Scholar 

  57. Hardy JA, Lam J, Nguyen JT, O’Brien T, Wells JA (2004) Discovery of an allosteric site in the caspases. Proc Natl Acad Sci U S A 101:12461–12466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Scheer JM, Romanowski MJ, Wells JA (2006) A common allosteric site and mechanism in caspases. Proc Natl Acad Sci U S A 103:7595–7600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Velazquez-Delgado EM, Hardy JA (2012) Zinc-mediated allosteric inhibition of caspase-6. J Biol Chem 287:36000–36011

    Article  CAS  PubMed  Google Scholar 

  60. Denault JB, Eckelman BP, Shin H, Pop C, Salvesen GS (2007) Caspase 3 attenuates XIAP (X-linked inhibitor of apoptosis protein)-mediated inhibition of caspase 9. Biochem J 405:11–19

    CAS  PubMed  Google Scholar 

  61. Boucher D, Blais V, Denault JB (2012) Caspase-7 uses an exosite to promote poly(ADP ribose) polymerase 1 proteolysis. Proc Natl Acad Sci U S A 109(15):5669–5674

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Boucher, D., Duclos, C., Denault, JB. (2014). General In Vitro Caspase Assay Procedures. In: V. Bozhkov, P., Salvesen, G. (eds) Caspases,Paracaspases, and Metacaspases. Methods in Molecular Biology, vol 1133. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0357-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0357-3_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0356-6

  • Online ISBN: 978-1-4939-0357-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics