Screening Proteins for NMR Suitability

  • Adelinda A. Yee
  • Anthony Semesi
  • Maite Garcia
  • Cheryl H. Arrowsmith
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1140)

Abstract

NMR spectroscopy is a valuable tool in structural genomics. Identification of protein samples that are amenable to structure determination by NMR spectroscopy requires efficient screening. The preparation of multiple samples in parallel and screening by NMR is described. The method described is applicable to large structural genomics projects but can easily be scaled down for application to small structural biology projects. All the equipment used is commonly found in any NMR structural biology laboratory.

Key words

NMR screening Autoinduction Structural genomics NMR spectroscopy NMR sample 

Notes

Acknowledgements

We acknowledge the support of NIGMS Protein Structure Initiative grant U54-GM094597 to NESG consortium, the Natural Sciences and Engineering Research Council of canada and the Canada Foundation for Innovation for infrastructure funding.

References

  1. 1.
    Christendat D, Yee A, Dharamsi A, Kluger Y et al (2000) Structural proteomics of an archeon. Nat Struct Biol 9:603–609Google Scholar
  2. 2.
    Yee A, Chang X, Pineda-Lucena A et al (2002) An NMR approach to structural proteomics. Proc Natl Acad Sci U S A 99:1825–1830PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Yee AA, Savchenko A, Ignachenko A et al (2005) NMR and X-ray crystallography, complementary tools in structural proteomics of small proteins. J Am Chem Soc 127:16512–16517PubMedCrossRefGoogle Scholar
  4. 4.
    Peti W, Etezady-Esfarjani T, Herrmann T et al (2004) NMR for structural proteomics of Thermotoga maritima: screening and structure determination. J Struct Funct Genomics 5:205–215PubMedCrossRefGoogle Scholar
  5. 5.
    Tyler RC, Aceti DJ, Bingman CA et al (2005) Comparison of cell-based and cell-free protocols for producing target proteins from the Arabidopsis thaliana genome for structural studies. Proteins 59:633–643PubMedCrossRefGoogle Scholar
  6. 6.
    Snyder D, Chen Y, Denissova N et al (2005) Comparisons of NMR spectral quality and success in crystallization demonstrate that NMR and X-ray crystallography are complementary methods for small protein structure determination. J Am Chem Soc 127:16505–16511PubMedCrossRefGoogle Scholar
  7. 7.
    Montelione GT, Arrowsmith C, Girvin ME, Kennedy MA et al (2009) Unique opportunities for NMR methods in structural genomics. J Struct Funct Genomics 10:101–106PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130PubMedCrossRefGoogle Scholar
  9. 9.
    Hogema BM, Arents JC, Bader R et al (1998) Inducer exclusion by glucose 6-phosphate in Escherichia coli. Mol Microbiol 28:755–765PubMedCrossRefGoogle Scholar
  10. 10.
    Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41:207–234PubMedCrossRefGoogle Scholar
  11. 11.
    Li Z, Kessler W, van den Heuvel J, Rinas U (2011) Simple defined autoinduction medium for high-level recombinant protein production using T7-based Escherichia coli expression systems. Appl Microbiol Biotechnol 91:1203–1213PubMedCrossRefGoogle Scholar
  12. 12.
    Fox BG, Blommel PG (2009) Autoinduction of protein expression. Curr Protoc Protein Sci 56:5.23.1–5.23.18Google Scholar
  13. 13.
    Tyler RC, Sreenath HK, Aceti DJ et al (2005) Auto-induction medium for the production of [U-13C, U-15N]-labeled proteins for NMR screening and structure determination. Protein Expr Purif 40:268–278PubMedCrossRefGoogle Scholar
  14. 14.
    Lemak A, Gutmanas A, Chitayat S et al (2011) A novel strategy for NMR resonance assignment and protein structure determination. J Biomol NMR 49:27–38PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Palmer AG, Cavanagh J, Wright PE, Rance M (1991) Sensitivity improvement in proton-detected two-dimensional heteronuclear correlation NMR spectroscopy. J Magn Reson 93:151–170Google Scholar
  16. 16.
    Kay LE, Keifer P, Saarinen T (1992) Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J Am Chem Soc 114:10663–10665CrossRefGoogle Scholar
  17. 17.
    Delaglio F, Grzesiek S, Vuister GW et al (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293PubMedCrossRefGoogle Scholar
  18. 18.
    Wu B, Skarina T, Yee A, Jobin MC et al (2010) NleG Type 3 effectors from enterohaemorrhagic Escherichia coli are U-Box E3 ubiquitin ligases. PLoS Pathog 6:e1000960PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Ramelot T, Cort JR, Yee AA et al (2002) Myxoma virus immunomodulatory protein M156R is a structural mimic of eukaryotic translation initiation factor eIF2a. J Mol Biol 322:943–954PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • Adelinda A. Yee
    • 1
  • Anthony Semesi
    • 1
  • Maite Garcia
    • 1
  • Cheryl H. Arrowsmith
    • 1
    • 2
  1. 1.Division of Cancer Genomics and Proteomics, and Northeast Structural Genomics Consortium (NESG)Ontario Cancer InstituteTorontoCanada
  2. 2.University of TorontoTorontoCanada

Personalised recommendations