Dengue pp 253-270

Part of the Methods in Molecular Biology book series (MIMB, volume 1138) | Cite as

Identification of Dengue RNA Binding Proteins Using RNA Chromatography and Quantitative Mass Spectrometry

  • Alex M. Ward
  • J. Gunaratne
  • Mariano A. Garcia-Blanco
Protocol

Abstract

A major challenge in dengue virus (DENV) research has been to understand the interaction of the viral RNA with host cell proteins during infection. Until recently, there were no comprehensive studies identifying host RNA binding proteins that interact with DENV RNA (Ward et al. RNA Biol 8 (6):1173–1186, 2011). Here, we describe a method for identifying proteins that associate with DENV RNA using RNA chromatography and quantitative mass spectrometry. The method utilizes a tobramycin RNA aptamer incorporated into an RNA containing the dengue 5′ and 3′ untranslated regions (UTRs) in order to reversibly bind RNA to a tobramycin matrix. The RNA–tobramycin matrix is incubated with SILAC-labeled cell lysates, and bound proteins are eluted using an excess of tobramycin. The eluate is analyzed using quantitative mass spectrometry, which allows direct and quantitative comparison of proteins bound to DENV UTRs and a control RNA–tobramycin matrix. This technique has the advantage of allowing one to distinguish between specific and nonspecific binding proteins based on the ratio of protein preferentially bound to the DENV UTRs versus the control RNA. This methodology can also be used for validation of quantitative mass spectrometry results using conventional Western blotting for specific proteins. Furthermore, though it was specifically developed to identify DENV RNA binding proteins, the RNA chromatography method described here can be applied to a broad range of viral and cellular RNAs for identification of interacting proteins.

Key words

RNA affinity chromatography Dengue virus RNA binding proteins Tobramycin RNA aptamer Quantitative mass spectrometry SILAC 

References

  1. 1.
    Weaver SC, Reisen WK (2010) Present and future arboviral threats. Antiviral Res 85(2):328–345PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Mackey TK, Liang BA (2012) Threats from emerging and re-emerging neglected tropical diseases (NTDs). Infect Ecol Epidemiol 2Google Scholar
  3. 3.
    Lindenbach B, Thiel HJ, Rice CM (2007) Flaviviridae: the viruses and their replication. Vol. I. Field’s virology, 5th edn. Lippincott, Williams and Wilkins, Philadelphia, PAGoogle Scholar
  4. 4.
    Ward AM, Bidet K, Yinglin A, Ler SG, Hogue K, Blackstock W, Gunaratne J, Garcia-Blanco MA (2011) Quantitative mass spectrometry of DENV-2 RNA-interacting proteins reveals that the DEAD-box RNA helicase DDX6 binds the DB1 and DB2 3′ UTR structures. RNA Biol 8(6):1173–1186PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Alvarez DE, De Lella Ezcurra AL, Fucito S, Gamarnik AV (2005) Role of RNA structures present at the 3′UTR of dengue virus on translation, RNA synthesis, and viral replication. Virology 339(2):200–212PubMedCrossRefGoogle Scholar
  6. 6.
    Alvarez DE, Filomatori CV, Gamarnik AV (2008) Functional analysis of dengue virus cyclization sequences located at the 5′ and 3′UTRs. Virology 375(1):223–235PubMedCrossRefGoogle Scholar
  7. 7.
    Alvarez DE, Lodeiro MF, Luduena SJ, Pietrasanta LI, Gamarnik AV (2005) Long-range RNA–RNA interactions circularize the dengue virus genome. J Virol 79(11):6631–6643PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Anwar A, Leong KM, Ng ML, Chu JJ, Garcia-Blanco MA (2009) The polypyrimidine tract-binding protein is required for efficient dengue virus propagation and associates with the viral replication machinery. J Biol Chem 284(25):17021–17029PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Brinton MA, Dispoto JH (1988) Sequence and secondary structure analysis of the 5′-terminal region of flavivirus genome RNA. Virology 162(2):290–299PubMedCrossRefGoogle Scholar
  10. 10.
    Brinton MA, Fernandez AV, Dispoto JH (1986) The 3′-nucleotides of flavivirus genomic RNA form a conserved secondary structure. Virology 153(1):113–121PubMedCrossRefGoogle Scholar
  11. 11.
    Chiu WW, Kinney RM, Dreher TW (2005) Control of translation by the 5′- and 3′-terminal regions of the dengue virus genome. J Virol 79(13):8303–8315PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Clyde K, Harris E (2006) RNA secondary structure in the coding region of dengue virus type 2 directs translation start codon selection and is required for viral replication. J Virol 80(5):2170–2182PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Emara MM, Liu H, Davis WG, Brinton MA (2008) Mutation of mapped TIA-1/TIAR binding sites in the 3′ terminal stem-loop of West Nile virus minus-strand RNA in an infectious clone negatively affects genomic RNA amplification. J Virol 82(21):10657–10670PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Filomatori CV, Lodeiro MF, Alvarez DE, Samsa MM, Pietrasanta L, Gamarnik AV (2006) A 5′ RNA element promotes dengue virus RNA synthesis on a circular genome. Genes Dev 20(16):2238–2249PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Garcia-Montalvo BM, Medina F, del Angel RM (2004) La protein binds to NS5 and NS3 and to the 5′ and 3′ ends of Dengue 4 virus RNA. Virus Res 102(2):141–150PubMedCrossRefGoogle Scholar
  16. 16.
    Grange T, Bouloy M, Girard M (1985) Stable secondary structures at the 3′-end of the genome of yellow fever virus (17 D vaccine strain). FEBS Lett 188(1):159–163PubMedCrossRefGoogle Scholar
  17. 17.
    Hahn CS, Hahn YS, Rice CM, Lee E, Dalgarno L, Strauss EG, Strauss JH (1987) Conserved elements in the 3′ untranslated region of flavivirus RNAs and potential cyclization sequences. J Mol Biol 198(1):33–41PubMedCrossRefGoogle Scholar
  18. 18.
    Holden KL, Harris E (2004) Enhancement of dengue virus translation: role of the 3′ untranslated region and the terminal 3′ stem-loop domain. Virology 329(1):119–133PubMedCrossRefGoogle Scholar
  19. 19.
    Holden KL, Stein DA, Pierson TC, Ahmed AA, Clyde K, Iversen PL, Harris E (2006) Inhibition of dengue virus translation and RNA synthesis by a morpholino oligomer targeted to the top of the terminal 3′ stem-loop structure. Virology 344(2):439–452PubMedCrossRefGoogle Scholar
  20. 20.
    Olsthoorn RC, Bol JF (2001) Sequence comparison and secondary structure analysis of the 3′ noncoding region of flavivirus genomes reveals multiple pseudoknots. RNA 7(10):1370–1377PubMedCentralPubMedGoogle Scholar
  21. 21.
    Paranjape SM, Harris E (2007) Y box-binding protein-1 binds to the dengue virus 3′-untranslated region and mediates antiviral effects. J Biol Chem 282(42):30497–30508PubMedCrossRefGoogle Scholar
  22. 22.
    Polacek C, Foley JE, Harris E (2009) Conformational changes in the solution structure of the dengue virus 5′ end in the presence and absence of the 3′ untranslated region. J Virol 83(2):1161–1166PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Takegami T, Washizu M, Yasui K (1986) Nucleotide sequence at the 3′ end of Japanese encephalitis virus genomic RNA. Virology 152(2):483–486PubMedCrossRefGoogle Scholar
  24. 24.
    Yocupicio-Monroy M, Padmanabhan R, Medina F, del Angel RM (2007) Mosquito La protein binds to the 3′ untranslated region of the positive and negative polarity dengue virus RNAs and relocates to the cytoplasm of infected cells. Virology 357(1):29–40PubMedCrossRefGoogle Scholar
  25. 25.
    Lei Y, Huang Y, Zhang H, Yu L, Zhang M, Dayton A (2011) Functional interaction between cellular p100 and the dengue virus 3′ UTR. J Gen Virol 92(Pt 4):796–806PubMedCrossRefGoogle Scholar
  26. 26.
    Li W, Li Y, Kedersha N, Anderson P, Emara M, Swiderek KM, Moreno GT, Brinton MA (2002) Cell proteins TIA-1 and TIAR interact with the 3′ stem-loop of the West Nile virus complementary minus-strand RNA and facilitate virus replication. J Virol 76(23):11989–12000PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Hartmuth K, Vornlocher HP, Luhrmann R (2004) Tobramycin affinity tag purification of spliceosomes. Methods Mol Biol 257:47–64PubMedGoogle Scholar
  28. 28.
    Srisawat C, Engelke DR (2001) Streptavidin aptamers: affinity tags for the study of RNAs and ribonucleoproteins. RNA 7(4):632–641PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Klug SJ, Famulok M (1994) All you wanted to know about SELEX. Mol Biol Rep 20(2):97–107PubMedCrossRefGoogle Scholar
  30. 30.
    Caputi M, Mayeda A, Krainer AR, Zahler AM (1999) hnRNP A/B proteins are required for inhibition of HIV-1 pre-mRNA splicing. EMBO J 18(14):4060–4067PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Stellato C, Gubin MM, Magee JD, Fang X, Fan J, Tartar DM, Chen J, Dahm GM, Calaluce R, Mori F, Jackson GA, Casolaro V, Franklin CL, Atasoy U (2011) Coordinate regulation of GATA-3 and Th2 cytokine gene expression by the RNA-binding protein HuR. J Immunol 187(1):441–449PubMedCrossRefGoogle Scholar
  32. 32.
    Mann M (2006) Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol 7(12):952–958PubMedCrossRefGoogle Scholar
  33. 33.
    Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386PubMedCrossRefGoogle Scholar
  34. 34.
    Butter F, Scheibe M, Morl M, Mann M (2009) Unbiased RNA–protein interaction screen by quantitative proteomics. Proc Natl Acad Sci U S A 106(26):10626–10631PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Mittler G, Butter F, Mann M (2009) A SILAC-based DNA protein interaction screen that identifies candidate binding proteins to functional DNA elements. Genome Res 19(2):284–293PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Ong SE, Mann M (2006) A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc 1(6):2650–2660PubMedCrossRefGoogle Scholar
  37. 37.
    Schulze WX, Mann M (2004) A novel proteomic screen for peptide–protein interactions. J Biol Chem 279(11):10756–10764PubMedCrossRefGoogle Scholar
  38. 38.
    Selbach M, Mann M (2006) Protein interaction screening by quantitative immunoprecipitation combined with knockdown (QUICK). Nat Methods 3(12):981–983PubMedCrossRefGoogle Scholar
  39. 39.
    Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1(6):2856–2860PubMedCrossRefGoogle Scholar
  40. 40.
    Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372PubMedCrossRefGoogle Scholar
  41. 41.
    Lossner C, Warnken U, Pscherer A, Schnolzer M (2011) Preventing arginine-to-proline conversion in a cell-line-independent manner during cell cultivation under stable isotope labeling by amino acids in cell culture (SILAC) conditions. Anal Biochem 412(1):123–125PubMedCrossRefGoogle Scholar
  42. 42.
    Rigbolt KT, Blagoev B (2010) Proteome-wide quantitation by SILAC. Methods Mol Biol 658:187–204PubMedCrossRefGoogle Scholar
  43. 43.
    Trinkle-Mulcahy L, Boulon S, Lam YW, Urcia R, Boisvert FM, Vandermoere F, Morrice NA, Swift S, Rothbauer U, Leonhardt H, Lamond A (2008) Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes. J Cell Biol 183(2):223–239PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  • Alex M. Ward
    • 1
  • J. Gunaratne
    • 2
  • Mariano A. Garcia-Blanco
    • 1
  1. 1.Emerging Infectious Diseases ProgramDuke-NUS Graduate Medical SchoolSingaporeSingapore
  2. 2.Mass Spectrometry and Systems Biology LaboratoryInstitute of Molecular and Cell BiologySingaporeSingapore

Personalised recommendations