Advertisement

Assays to Examine Endothelial Cell Migration, Tube Formation, and Gene Expression Profiles

  • Shuzhen Guo
  • Josephine Lok
  • Yi Liu
  • Kazuhide Hayakawa
  • Wendy Leung
  • Changhong Xing
  • Xunming Ji
  • Eng H. Lo
Part of the Methods in Molecular Biology book series (MIMB, volume 1135)

Abstract

Common methods for studying angiogenesis in vitro include the tube formation assay, the migration assay, and the study of the endothelial genome. The formation of capillary-like tubes in vitro on basement membrane matrix mimics many steps of the angiogenesis process in vivo and is used widely as a screening test for angiogenic or antiangiogenic factors. Other assays related to the study of angiogenesis include the cell migration assay, the study of gene expression changes during the process of angiogenesis, and the study of endothelial-derived microparticles. Protocols for these procedures will be described here.

Key words

Angiogenesis Endothelial cells Matrigel matrix Tube formation Migration Transcriptome Microparticles 

References

  1. 1.
    Montesano R, Orci L (1985) Tumor-promoting phorbol esters induce angiogenesis in vitro. Cell 42(2):469–477CrossRefPubMedGoogle Scholar
  2. 2.
    Koh W, Stratman AN, Sacharidou A, Davis GE (2008) In vitro three dimensional collagen matrix models of endothelial lumen formation during vasculogenesis and angiogenesis. Methods Enzymol 443:83–101CrossRefPubMedGoogle Scholar
  3. 3.
    Kubota Y, Kleinman HK, Martin GR, Lawley TJ (1988) Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J Cell Biol 107(4):1589–1598CrossRefPubMedGoogle Scholar
  4. 4.
    Arnaoutova I, George J, Kleinman HK, Benton G (2009) The endothelial cell tube formation assay on basement membrane turns 20: state of the science and the art. Angiogenesis 12(3):267–274CrossRefPubMedGoogle Scholar
  5. 5.
    Gallo A, Tandon M, Alevizos I, Illei GG (2012) The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One 7(3):e30679CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Le Bihan MC, Bigot A, Jensen SS, Dennis JL, Rogowska-Wrzesinska A, Laine J, Gache V, Furling D, Jensen ON, Voit T, Mouly V, Coulton GR, Butler-Browne G (2012) In-depth analysis of the secretome identifies three major independent secretory pathways in differentiating human myoblasts. J Proteomics 77:344–356CrossRefPubMedGoogle Scholar
  7. 7.
    Lai CP, Breakefield XO (2012) Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Front Physiol 3:228CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM, Breakefield XO (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10(12):1470–1476CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Kim HK, Song KS, Chung JH, Lee KR, Lee SN (2004) Platelet microparticles induce angiogenesis in vitro. Br J Haematol 124(3):376–384CrossRefPubMedGoogle Scholar
  10. 10.
    Shai E, Varon D (2011) Development, cell differentiation, angiogenesis–microparticles and their roles in angiogenesis. Arterioscler Thromb Vasc Biol 31(1):10–14CrossRefPubMedGoogle Scholar
  11. 11.
    Taraboletti G, D'Ascenzo S, Borsotti P, Giavazzi R, Pavan A, Dolo V (2002) Shedding of the matrix metalloproteinases MMP-2, MMP-9, and MT1-MMP as membrane vesicle-associated components by endothelial cells. Am J Pathol 160(2):673–680CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Deregibus MC, Cantaluppi V, Calogero R, Lo Iacono M, Tetta C, Biancone L, Bruno S, Bussolati B, Camussi G (2007) Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 110(7):2440–2448CrossRefPubMedGoogle Scholar
  13. 13.
    Xing C, Lee S, Kim WJ, Wang H, Yang YG, Ning M, Wang X, Lo EH (2009) Neurovascular effects of CD47 signaling: promotion of cell death, inflammation, and suppression of angiogenesis in brain endothelial cells in vitro. J Neurosci Res 87(11):2571–2577CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Guo S, Zhou Y, Xing C, Lok J, Som AT, Ning M, Ji X, Lo EH (2012) The vasculome of the mouse brain. PLoS One 7(12):e52665CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Shuzhen Guo
    • 1
  • Josephine Lok
    • 2
  • Yi Liu
    • 1
  • Kazuhide Hayakawa
    • 1
  • Wendy Leung
    • 1
  • Changhong Xing
    • 1
  • Xunming Ji
    • 3
  • Eng H. Lo
    • 1
  1. 1.Neuroprotection Research Laboratory, Department of Radiology and NeurologyHarvard Medical School, Massachusetts General HospitalBostonUSA
  2. 2.Department of PediatricsHarvard Medical School, Massachusetts General HospitalBostonUSA
  3. 3.Cerebrovascular Research Center, Xuanwu HospitalCapital Medical UniversityBeijingChina

Personalised recommendations