Cerebral Angiogenesis pp 223-235

Part of the Methods in Molecular Biology book series (MIMB, volume 1135) | Cite as

Laser Speckle Contrast Imaging to Measure Changes in Cerebral Blood Flow

  • Ian R. Winship

Abstract

Laser speckle contrast imaging (LSCI) is a powerful tool capable of acquiring detailed maps of blood flow in arteries and veins on the cortical surface. Based on the blurring of laser speckle patterns by the motion of blood cells, LSCI can be combined with a variety of optical imaging preparations to acquire high-spatiotemporal resolution images of blood flow, and track changes in blood flow over time, using relatively simple instrumentation. Here, we describe methods for LSCI of cerebral blood flow via a thin skull imaging preparation in mice or rats. This preparation allows precise semiquantitative mapping of changes in blood flow over time using straightforward surgical protocols and equipment.

Key words

Laser speckle contrast imaging Arterioles Veins Cerebral blood flow 

References

  1. 1.
    Liebeskind DS (2003) Collateral circulation. Stroke 34:2279–2284CrossRefPubMedGoogle Scholar
  2. 2.
    Shuaib A, Butcher K, Mohammad AA, Saqqur M, Liebeskind DS (2011) Collateral blood vessels in acute ischaemic stroke: a potential therapeutic target. Lancet Neurol 10:909–921CrossRefPubMedGoogle Scholar
  3. 3.
    Parthasarathy AB, Tom WJ, Gopal A, Zhang X, Dunn AK (2008) Robust flow measurement with multi-exposure speckle imaging. Opt Express 16:1975–1989CrossRefPubMedGoogle Scholar
  4. 4.
    Strong AJ, Bezzina EL, Anderson PJ, Boutelle MG, Hopwood SE, Dunn AK (2006) Evaluation of laser speckle flowmetry for imaging cortical perfusion in experimental stroke studies: quantitation of perfusion and detection of peri-infarct depolarisations. J Cereb Blood Flow Metab 26:645–653CrossRefPubMedGoogle Scholar
  5. 5.
    Tom WJ, Ponticorvo A, Dunn AK (2008) Efficient processing of laser speckle contrast images. IEEE Trans Med Imaging 27:1728–1738CrossRefPubMedGoogle Scholar
  6. 6.
    Boas DA, Dunn AK (2010) Laser speckle contrast imaging in biomedical optics. J Biomed Opt 15:011109CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Duncan DD, Kirkpatrick SJ (2008) Can laser speckle flowmetry be made a quantitative tool? J Opt Soc Am A Opt Image Sci Vis 25:2088–2094CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Dunn AK (2012) Laser speckle contrast imaging of cerebral blood flow. Ann Biomed Eng 40:367–377CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Dunn AK, Devor A, Dale AM, Boas DA (2005) Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex. Neuroimage 27:279–290CrossRefPubMedGoogle Scholar
  10. 10.
    Armitage GA, Todd KG, Shuaib A, Winship IR (2010) Laser speckle contrast imaging of collateral blood flow during acute ischemic stroke. J Cereb Blood Flow Metab 30:1432–1436CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Shin HK, Nishimura M, Jones PB, Ay H, Boas DA, Moskowitz MA, Ayata C (2008) Mild induced hypertension improves blood flow and oxygen metabolism in transient focal cerebral ischemia. Stroke 39:1548–1555CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Zhang S, Murphy TH (2007) Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo. PLoS Biol 5:e119CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Li P, Murphy TH (2008) Two-photon imaging during prolonged middle cerebral artery occlusion in mice reveals recovery of dendritic structure after reperfusion. J Neurosci 28:11970–11979CrossRefPubMedGoogle Scholar
  14. 14.
    Parthasarathy AB, Kazmi SM, Dunn AK (2010) Quantitative imaging of ischemic stroke through thinned skull in mice with Multi Exposure Speckle Imaging. Biomed Opt Express 1:246–259CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Ayata C, Dunn AK, Gursoy-OZdemir Y, Huang Z, Boas DA, Moskowitz MA (2004) Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex. J Cereb Blood Flow Metab 24:744–755CrossRefPubMedGoogle Scholar
  16. 16.
    Rege A, Seifert AC, Schlattman D, Ouyang Y, Li KW, Basaldella L, Brem H, Tyler BM, Thakor NV (2012) Longitudinal in vivo monitoring of rodent glioma models through thinned skull using laser speckle contrast imaging. J Biomed Opt 17:126017CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Rege A, Thakor NV, Rhie K, Pathak AP (2012) In vivo laser speckle imaging reveals microvascular remodeling and hemodynamic changes during wound healing angiogenesis. Angiogenesis 15:87–98CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Rege A, Murari K, Seifert A, Pathak AP, Thakor NV (2011) Multiexposure laser speckle contrast imaging of the angiogenic microenvironment. J Biomed Opt 16:056006CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Bonhoeffer T, Grinvald A (1996) In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods. Academic, San Diego, pp 55–97Google Scholar
  20. 20.
    Ratzlaff EH, Grinvald A (1991) A tandem-lens epifluorescence macroscope: hundred-fold brightness advantage for wide-field imaging. J Neurosci Methods 36:127–137CrossRefPubMedGoogle Scholar
  21. 21.
    Sigler A, Goroshkov A, Murphy TH (2008) Hardware and methodology for targeting single brain arterioles for photothrombotic stroke on an upright microscope. J Neurosci Methods 170:35–44CrossRefPubMedGoogle Scholar
  22. 22.
    Ponticorvo A, Dunn AK (2010) How to build a Laser Speckle Contrast Imaging (LSCI) system to monitor blood flow. J Vis Exp (45). pii: 2004. doi: 10.3791/2004
  23. 23.
    Harrison TC, Sigler A, Murphy TH (2009) Simple and cost-effective hardware and software for functional brain mapping using intrinsic optical signal imaging. J Neurosci Methods 182:211–218CrossRefPubMedGoogle Scholar
  24. 24.
    Kirkpatrick SJ, Duncan DD, Wells-Gray EM (2008) Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging. Opt Lett 33:2886–2888CrossRefPubMedGoogle Scholar
  25. 25.
    Thompson O, Andrews M, Hirst E (2011) Correction for spatial averaging in laser speckle contrast analysis. Biomed Opt Express 2:1021–1029CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic, San DiegoGoogle Scholar
  27. 27.
    Drew PJ, Shih AY, Driscoll JD, Knutsen PM, Blinder P, Davalos D, Akassoglou K, Tsai PS, Kleinfeld D (2010) Chronic optical access through a polished and reinforced thinned skull. Nat Methods 7:981–984CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Yuan S, Devor A, Boas DA, Dunn AK (2005) Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging. Appl Opt 44:1823–1830CrossRefPubMedGoogle Scholar
  29. 29.
    Duncan DD, Kirkpatrick SJ, Wang RK (2008) Statistics of local speckle contrast. J Opt Soc Am A Opt Image Sci Vis 25:9–15CrossRefPubMedGoogle Scholar
  30. 30.
    Kirkpatrick SJ, Duncan DD, Wang RK, Hinds MT (2007) Quantitative temporal speckle contrast imaging for tissue mechanics. J Opt Soc Am A Opt Image Sci Vis 24:3728–3734CrossRefPubMedGoogle Scholar
  31. 31.
    Li P, Ni S, Zhang L, Zeng S, Luo Q (2006) Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging. Opt Lett 31:1824–1826CrossRefPubMedGoogle Scholar
  32. 32.
    Qiu J, Li P, Luo W, Wang J, Zhang H, Luo Q (2010) Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast. J Biomed Opt 15:016003CrossRefPubMedGoogle Scholar
  33. 33.
    Shih AY, Driscoll JD, Drew PJ, Nishimura N, Schaffer CB, Kleinfeld D (2012) Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain. J Cereb Blood Flow Metab 32(7):1277–1309CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ian R. Winship
    • 1
  1. 1.Centre for NeuroscienceUniversity of AlbertaEdmontonCanada

Personalised recommendations