Skip to main content

DNA Electroporation of Multi-agent Vaccines Conferring Protection Against Select Agent Challenge: TriGrid Delivery System

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1121))

Abstract

Effective multi-agent/multivalent vaccines that confer protection against more than one disease are highly desirable to the patient and to health-care professionals. Electroporation of DNA vaccines, whereby tissues injected with DNA are subjected to localized electrical currents, is an ideal platform technology that achieves protective immune responses to multivalent vaccination. Here, we describe an electroporation-based immunization technique capable of administering a cocktail of DNA vaccinations in vivo. Immune response measurements, including protection from pathogen challenge and induction of antigen-specific antibody responses and cell-mediated immune responses, are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. CDC (2000) Use of anthrax vaccine in the united states: recommendations of the advisory committee on immunization practices. MMWR 49:1–22

    Google Scholar 

  2. Feodorova VA, Corbel MJ (2009) Prospects for new plague vaccines. Expert Rev Vaccines 8:1721–1738

    Article  CAS  PubMed  Google Scholar 

  3. Meyer KF, Foster LE (1948) Measurement of protective serum antibodies in human volunteers inoculated with plague prophylactics. Stanford Med Bull 6:75–79

    CAS  PubMed  Google Scholar 

  4. Vidor E (2007) The nature and consequences of intra- and inter-vaccine interference. J Comp Pathol 137(Suppl 1):S62–66

    Article  CAS  PubMed  Google Scholar 

  5. Johnston SA, Talaat AM, McGuire MJ (2002) Genetic immunization: what’s in a name? Arch Med Res 33:325–329

    Article  CAS  PubMed  Google Scholar 

  6. Robinson HL, Ginsberg HS, Davis HL, Johnston SA, Liu MA (1997) The scientific future of DNA for immunization. Am Acad Microbiol

    Google Scholar 

  7. Sardesai NY, Weiner DB (2011) Electroporation delivery of DNA vaccines: prospects for success. Curr Opin Immunol 23:421–429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Donnelly J, Berry K, Ulmer JB (2003) Technical and regulatory hurdles for DNA vaccines. Int J Parasitol 33:457–467

    Article  CAS  PubMed  Google Scholar 

  9. Luxembourg A, Evans CF, Hannaman D (2007) Electroporation-based DNA immunisation: translation to the clinic. Expert Opin Biol Ther 7:1647–1664

    Article  CAS  PubMed  Google Scholar 

  10. Capone S, Zampaglione I, Vitelli A et al (2006) Modulation of the immune response induced by gene electrotransfer of a hepatitis c virus DNA vaccine in nonhuman primates. J Immunol 177:7462–7471

    CAS  PubMed  Google Scholar 

  11. Dupuy LC, Richards MJ, Ellefsen B et al (2011) A DNA vaccine for venezuelan equine encephalitis virus delivered by intramuscular electroporation elicits high levels of neutralizing antibodies in multiple animal models and provides protective immunity to mice and nonhuman primates. Clin Vaccine Immunol 18:707–716

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Luckay A, Sidhu MK, Kjeken R et al (2007) Effect of plasmid DNA vaccine design and in vivo electroporation on the resulting vaccine-specific immune responses in rhesus macaques. J Virol 81:5257–5269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Luxembourg A, Hannaman D, Ellefsen B, Nakamura G, Bernard R (2006) Enhancement of immune responses to an hbv DNA vaccine by electroporation. Vaccine 24:4490–4493

    Article  CAS  PubMed  Google Scholar 

  14. McCluskie MJ, Brazolot Millan CL, Gramzinski RA et al (1999) Route and method of delivery of DNA vaccine influence immune responses in mice and non-human primates. Mol Med 5:287–300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Widera G, Austin M, Rabussay D et al (2000) Increased DNA vaccine delivery and immunogenicity by electroporation in vivo. J Immunol 164:4635–4640

    CAS  PubMed  Google Scholar 

  16. Albrecht MT, Livingston BD, Pesce JT, Bell MG, Hannaman D, Keane-Myers AM (2012) Electroporation of a multivalent DNA vaccine cocktail elicits a protective immune response against anthrax and plague. Vaccine 30:4872–4883

    Article  CAS  PubMed  Google Scholar 

  17. McMahon JM, Wells DJ (2004) Electroporation for gene transfer to skeletal muscles: current status. BioDrugs 18:155–165

    Article  CAS  PubMed  Google Scholar 

  18. Yuan TF (2008) Vaccine submission with muscle electroporation. Vaccine 26:1805–1806

    Article  CAS  PubMed  Google Scholar 

  19. Kutzler MA, Weiner DB (2008) DNA vaccines: ready for prime time? Nat Rev Genet 9:776–788

    Article  CAS  PubMed  Google Scholar 

  20. Braun S (2008) Muscular gene transfer using nonviral vectors. Curr Gene Ther 8:391–405

    Article  CAS  PubMed  Google Scholar 

  21. Albrecht MT, Li H, Williamson ED et al (2007) Human monoclonal antibodies against anthrax lethal factor and protective antigen act independently to protect against bacillus anthracis infection and enhance endogenous immunity to anthrax. Infect Immun 75:5425–5433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Williams JA, Carnes AE, Hodgson CP (2009) Plasmid DNA vaccine vector design: impact on efficacy, safety and upstream production. Biotechnol Adv 27:353–370

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Marin M (2008) Folding at the rhythm of the rare codon beat. Biotechnol J 3:1047–1057

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Keane-Myers, A.M., Bell, M., Hannaman, D., Albrecht, M. (2014). DNA Electroporation of Multi-agent Vaccines Conferring Protection Against Select Agent Challenge: TriGrid Delivery System. In: Li, S., Cutrera, J., Heller, R., Teissie, J. (eds) Electroporation Protocols. Methods in Molecular Biology, vol 1121. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-9632-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9632-8_29

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-9631-1

  • Online ISBN: 978-1-4614-9632-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics